- 1. For the H₂S speciation diagram handed out in class, show how to calculate the concentration and pH of all three crossing points.
- 2. Assume pure water, closed to the atmosphere.
 - a) Calculate the solubility of calcite at 25 °C as
 - 1. moles Ca/liter
 - 2. g CaCO₃/100 ml
 - 3. ppm Ca
 - b) Calculate the solubility of calcite in a solution of 0.05 M CaCl₂ at 25°C.
- 3. The solubility of amorphous silica in water is about 120 ppm of SiO₂ at 25°C. The solution contains silicic acid, H₄SiO₄.
 - a) Use the shortcut discussed in class to calculate the pH of a saturated silica solution.
 - b) Go to the web-phreeq homepage at https://www.ndsu.edu/webphreeq/

Choose "Advanced speciation" and "Continue"

Under "Equilibrium Species" "Phase 1" enter "SiO2(a)" which means amorphous SiO₂. For "Desired Saturation Index" enter "0" which means the solution is saturated with the phase.

Choose "Full Output" and "Continue"

Inspect the bottom of the output page.

- 1. What is the calculated pH of the solution? How does this compare to the shortcut method?
- 2. What is the calculated concentration of H_4SiO_4 in the solution, expressed as molality?
- 3. Show how to convert the calculated molality of H₄SiO₄ to mg/L SiO₂ and compare the results to Faure, Fig. 9.4.