Arsenic Tracing in the Mississippi River Valley Aquifer

Ezekiel Aho

Outline

- Arsenic
- Article Problem
- Locations
- Methods
- Modeling
- Article Output
- Article Conclusions
- Flow Path Modeling
- Conclusions

Arsenic

- Natural element found in soils
- As is recognized as a carcinogen
- Was once found in insecticides, pesticides, and herbicides
- Found today in pharmaceutical and glass industries
- Also used as a feed additive to increase weight gain and to treat diseases in swine and poultry
- Toxicity is linked to solubility, which is linked to pH and redox
- Sources of contamination for humans
 - Drinking water
 - Crops
 - · Animal products

Article Problem

- Inverse modeling performed to analyze distribution of arsenic (As) in southeastern Arkansas
- Reductive dissolution of Fe oxyhydroxide suggested as the dominant release method
- Groundwater in this area heavily used for crop production
- Arsenic affects other areas of the world, especially in the Ganges-Brahmaputra-Meghna Delta region of Bangladesh
- US EPA and WHO safe level of 0.01 mg/L (10 ppb) in drinking water
 - Bangladesh water was found to have >0.05 mg/L from natural sources

Location of study area

- As background data
- Water level contours
- Monitoring well sites

Modeled flow vectors and flow lines

- Irrigation wells (circles)
- Monitoring wells (squares)

Model Components

- 3 different sample areas
 - DRL1 High As levels
 - DRL2 Medium As levels
 - DRL6 Low As levels
- Shallow level (10.6 m) and deep level (36.5 m) designations
- Analysis included field and well head measurements

Parameter	DRL1S	DRL1D	DRL2S	DRL2D	DRL6S	DRL6D
Water level (m bls)	5.6	5.7	6.9	6.8	8.4	8.3
Temperature (°C)	18.5	17.9	19.5	18.5	18.9	18.5
EC (μS/cm)	310	306	456	426	953	658
TDS (mg/L)	209	187	261	241	572	382
pH	6.11	6.13	6.87	6.81	6.84	6.68
Alkalinity (mg/L as CaCO ₃)	108	135	215	189	437	300
ORP (RmV)	198	124	55	66	-247	-223
DO (mg/L)	0.4	0.08	0.06	0.06	0.08	0.08
Hardness (mg/L)	102	61	177	164	426	278
Total dissolved As (µg/L)	0.73	29.6	12.3	39.7	49.4	1.02
As(III) (μg/L)	<0.5	10.2	1.14	8.22	5.23	< 0.5
As(V) (μg/L)	0.7	20.3	11.4	33.9	45.3	1.15
Particulate As (μg/L)	0.1	0	0	2.2	0	0.3
Total Fe (mg/L)	1.9	41	11.5	16.3	8.3	11
Fe^{2+} (mg/L)	0.04	9.2	7.3	8.5	4.6	5.8
Fe ³⁺ (mg/L)	1.6	31.8	4.2	7.8	2.8	3.9
Particulate Fe (mg/L)	0.24	1.7	0.1	0	0.16	0.3
Ca ²⁺ (mg/L)	25.4	17.4	55.6	48.8	130	80
Mg^{2+} (mg/L)	9.3	4.4	9.4	10.3	24.7	18.9
Na ⁺ (mg/L)	16.3	11.7	16.3	17.1	41.8	18.7
K^+ (mg/L)	2	2.6	1.1	1.4	1.5	1.2
Mn^{2+} (mg/L)	2.7	1.5	0.5	0.7	0.4	0.7
Cl ⁻ (mg/L)	14.2	20.1	7.7	7.6	27.1	29.6
SO_4^{2-} (mg/L)	18	2	1	1.4	46	1.4
$NO_3^N \text{ (mg/L)}$	2.25	<0.01	< 0.01	<0.01	< 0.01	< 0.01
$NH_4-N (mg/L)$	0.03	0.21	0.9	0.35	1.1	0.72
PO ₄ -P (mg/L)	0.02	0.03	0.03	0.05	0.02	0.05
$S^{2-}(\mu g/L)$	2	6	11	51	27	27
SiO ₂ (mg/L)	31.7	32.9	31.6	34	34.4	28.3
Br ⁻ (mg/L)	0.08	0.08	0.06	0.06	0.14	0.12
Ba^{2+} (µg/L)	166	198	215	150	538	388
B^{3+} (µg/L)	25	13	35	30	42	44
Fl ⁻ (mg/L)	0.4	0.3	0.3	0.4	<0.01	0.3
Zn^{2+} (µg/L)	2.7	5.2	2.4	3.8	1.7	1.4
V^{5+} (µg/L)	0.96	0.51	< 0.50	< 0.50	< 0.50	< 0.50
Co^{2+} (µg/L)	1.95	6.44	0.52	<0.50	< 0.50	< 0.50
Ni ²⁺ (μg/L)	2.7	4.4	< 0.50	< 0.50	< 0.50	< 0.50
TOC (mg/L)	6.2	6.8	6	6.3	11	6.8
Volatile organic and inorganic compound (ppm)	<0.1	<0.1	0.3	0.5	1.4	0.7

Methods

- Collection was done in accordance with USGS methods
- The well was pumped for 30-45 min to collect temperature, electrical conductance (EC), pH, oxidation reduction potential (ORP), and dissolved oxygen (DO) readings
- Groundwater was collected in four 100 mL bottles
 - 1: Filtered (0.45 µm) and acidified
 - 2: Not-filtered and acidified
 - 3: Filtered (0.20 µm) and acidified
 - 4: Filtered (0.45 µm) and not-acidified
- Dissolved cations were measured on the acidified samples, dissolved anions were measured on the non-acidified samples

Statistics

- Data obtained from existing irrigation wells in the research area from 2002
- Metal analysis was done with a 0.45 µm membrane and preserved in nitric acid
- A plasma optical-emission mass spectrometer ran tests for trace metals
- These samples lacked Fe and As speciation, DO, dissolved H₂S, and ORP; these were supplemented using data from the DRL wells

Parameters measured	Minimum	Maximum	Mean	Median	Std. deviation
Water level (m)	3.3	12.4	7.4	7	2.16
Temperature (°C)	17.3	19.5	17.9	18	0.47
Conductivity (μS/cm)	148	1353	528	421	309
TDS (mg/L)	168	746	327	261	157
pH	6.11	7.06	6.7	6.8	0.24
Alkalinity (mg/L as CaCO ₃)	52	437	219	188	111
Hardness (mg/L)	43	491	203	164	127
As (μg/L)	0.73	50	14.1	7	15.3
Fe (mg/L)	1.87	41	11.9	10.5	8.1
Ca (mg/L)	10.6	143	58.7	48.6	37.6
Mg (mg/L)	4.1	33.5	13.8	10.3	8.3
Na (mg/L)	10.7	72	25.1	18.7	15.1
K (mg/L)	0.46	4.9	1.96	1.9	1.05
Mn (mg/L)	0.29	1.8	0.68	0.6	0.37
Cl (mg/L)	4.82	116	25.5	18	27.9
SO ₄ (mg/L)	0.95	85.2	12.2	4	19.1
$NO_3-N (mg/L)$	<0.01	2.25	0.14	0.02	0.43
NH ₃ -N (mg/L)	0.04	1.06	0.29	0.23	0.25
PO ₄ -P (mg/L)	<0.005	0.1	0.03	0.02	0.03
Ni (μg/L)	<0.5	4.4	1.9	2	0.75
Cu (μg/L)	<5	46	7.2	5	7.8
SiO ₂ (mg/L)	24.7	51.7	33.5	32.3	4.8
Br (mg/L)	<0.01	0.52	0.12	0.09	0.12
Ba (μg/L)	0.12	0.78	0.27	0.14	0.17
B (μg/L)	4.5	48.6	18.5	13.4	14.7
F (mg/L)	<0.01	0.4	0.24	0.23	0.08
Zn (μg/L)	<1	5	1.8	1.7	1
V (μg/L)	<0.5	1.9	1	1	0.33
Cr (µg/L)	<0.4	3	0.7	0.5	6.6
TOC (mg/L)	0.33	11	2.8	1.8	2.5

Article conclusions

- Common supersaturated phases
 - Quartz
 - Magnetite
 - Pyrite
 - $Ba_3(AsO_4)_2 Barium$ Arsenate
- Fe oxyhydroxide is dominant in releasing As
- Redox state is the main factor that affects the rate of Fe oxyhydroxide reduction

Phases	JF10	JF13	JF19	JF21	JF23
Sphalerite	-4.46	Supersaturated	-5.49	Supersaturated	-5.40
FeS (ppt)	-9.85	-2.29	-11.1	-2.65	-7.86
Ferrihydrite	-6.01	-6.01	-5.22	-5.78	-6.14
Goethite	-3.26	-3.25	-2.45	-3.02	-3.80
Hematite	-4.15	-4.14	-2.54	3.67	-4.39
Siderite	-0.29	Supersaturated	Supersaturated	-0.60	Supersaturated
Fluorite	-1.91	-1.60	-2.80	-2.25	-2.05
Halite	-8.26	-8.08	-8.06	-8.40	-8.26
Calcite	-0.58	-0.05	-0.40	-1.33	-0.92
Dolomite	-1.49	-0.47	-1.20	-2.94	-2.31
Gypsum	-3.25	-2.23	-3.30	-2.96	-2.92
Barite	-0.80	Supersaturated	-0.38	-0.28	-0.49
Manganite	-8.92	-	-9.83	_	-8.14
Magnesite	-1.84	-1.34	-1.72	-2.54	-2.34
Vivianite	-4.84	-5.97	-5.56	-5.01	-2.78
FeAsO ₄ ·2H ₂ O	-19.0	-19.0	-16.3	-17.7	-18.4

Comparison to Bangladesh As

- Sediment As concentrations and groundwater chemistry similar between Arkansas aquifer and Bangladesh, but aqueous As concentrations in this area are less than Bangladesh
- The biggest difference comes from the concentration of sulfate and its relationship with the reducing environment
- Sulfate reduction has not occurred in Bangladesh, so As has remained mobile in the reducing conditions
- Could be explained by concentration levels
 - Bangladesh: <3 mg/L
 - Arkansas: 1 to 46 mg/L

My analysis

• Flow path analysis

• Red: DRL1S to DRL2S

• Green: DRL6S to DRL2S

- Selected to compare to results found in the article
- MINTEQ.V4 database used, similar to the original MINTEQA2 database used in the article

Flow Path Modeling Inputs

SOLUTION 1		SOLUTION 2		SOLUTION 3			
temp	18.5	temp	17.9	temp	18.5	•	Solution 1:
Hq	6.11	qməs Ha	6.13	-	6.68		
pe	4	-	4	pН			DRL1S
redox		pe		pe	4		
	pe	redox	pe	redox	pe		
units	ppm	units	ppm	units	ppm	•	Solution 2:
density		density	1	density	1		
Alkalinit		Alkalini	_	Alkalini	ty 300		DRL2S
As	0.00073	As	0.0296	As	0.00102		
Ba	0.166	Ba	0.198	Ba	0.388		
Ca	25.4	Ca	17.4	Ca	80	•	Solution 3:
C1	14.2	Cl	20.1	C1	29.6		
Fe (2)	0.04	Fe(2)	9.2	Fe (2)	5.8		DRL6S
Fe (3)	1.6	Fe(3)	31.8	Fe (3)	3.9		
Mg	9.3	Mg	4.4	Mg	18.9		
Mn (2)	2.7	Mn (2)	1.5	Mn (2)	0.7		
N(-3)	2.25	N(-3)	0.01	N(-3)	0.01		
N(5)	0.03	N(5)	0.21	N(5)	0.72		
Na	16.3	Na	11.7	Na	18.7		
P	0.02	0(0)	0.4	P	0.05		
S(6)	0.002	P	0.03	S(6)	0.027		
Si	31.7	S(6)	0.006	Si	28.3		
Zn	0.0027	Si	32.9	Zn	0.0014		
0(0)	0.06	Zn	0.0052	0(0)	0.08		
-water	1 # kg	-water	1 # kg	-water	1 # kg		
	_						

Modeling Challenges

- Uncertainties had to be increased from the example observed
- Equalities/inequalities
 - Led to removing some elements given in the article
- Number of models
 - PHREEQC returned 1000-2000 models, reduced that to 409 and 820
- Transferring model data to excel
 - Required importing and formatting data to be interpreted
 - SI data was not transferred

```
-balance
      As(3) 0.45 0.25
                  0.25
      As(5) 0.45
      Ba
                  0.25
            0.45
                  0.25
            0.45
                  0.25
      Fe(2) 0.45
                 0.25
      Fe(3) 0.45
                  0.25
                  0.25
      Μq
            0.45
      Mn(2) 0.45
                  0.25
      N(-3) 0.45
                  0.25
      N(5)
                  0.25
      Na
                  0.25
            0.45
                  0.25
      Si
                 0.25
            0.45
      Zn
            0.45 0.25
```

Simulation 1. Inverse 1. Models = 409.

Data Transfer

- 1. Data block for exporting results into a table
- 2. Access output through Notepad

```
SELECTED_OUTPUT
-file selected.out.1.1
-user_punch true
-inverse_modeling true
```


Data Transfer cont.

- 3. Use Notepad to open data in Excel
- 4. Save and format Excel data

Flow Path Observations

- Many changes and variations within the different models found
- Consistently no Fluorite
- Most models did not have Dolomite
- Barium Arsenate had higher average phase mole transfers between DRL1S and DRLS2S than DRL6S
- Scorodite (FeAsO₄ 2H₂O) was comparable between the flow paths

	Barium Arsenate		Scorodite		
	DRL1S- DRL2S	DRL6S- DRL2S	DRL1S- DRL2S	DRL6S- DRL2S	
Max	2.93E+01	4.66E+01	2.51E+01	1.91E+01	
Avg	7.14E-01	2.70E+00	-5.41E+00	-1.43E+00	
Min	-9.57E+00	-1.25E+01	-9.32E+01	-5.86E+01	

Comparison of Results

- 21-10 compared to DRL1S-DRL2S
- 13-10 compared to DRL6S-DRL2S

 Differences in results may come from uncertainties and some elements being neglected

Mineral phases	Phase state	Phase mole transfers JF23—JF10	Phase mole transfers JF21—JF10	Phase mole transfers JF19-JF10	Phase mole transfers JF13-JF10
Calcite	Dissolving	2.74E — 04	1.40E - 03	1.35E — 03	_
Gypsum	Dissolving	2.33E — 04	_	_	8.80E — 06
CH ₂ O	Dissolving	5.92E — 04	3.11	2.07	2.88
Halite	Dissolving	1.35E — 04	2.13E - 04	-	1.56E - 04
Fluorite	Dissolving	5.32E - 07	4.15E – 06	3.43E - 06	3.04E - 06
$Fe(OH)_3(a)$	Dissolving	1.79E - 04	1.25E + 01	8.29	-
FeS (ppt)	Precipitating	-2.72E - 04	-9.34	−7.68	-8.65
$H_2S(g)$	Dissolving	_	9.34	7.68	8.65
Siderite	Precipitating	_	-3.11	−6.12E − 01	-2.88
Sphalerite	Dissolving	-2.44E - 08	1.11E – 08	_	9.78E – 09
Barite	Dissolving	5.11E - 07	8.15E - 07	4.69E - 07	−2.03E − 07
Vivianite	Precipitating	-1.61E - 07	-2.64E-07	−7.09E − 07	−2.27E − 07
NaX	Dissolving		2.51E - 04	2.09E - 04	_
CaX ₂	Precipitating	-2.27E - 04	-4.93E-04	−4.77E − 04	_
$CO_2(g)$	Precipitating	_	_	−1.46	_
$NH_3(g)$	Dissolving	6.43E — 06	_	_	_

Overall Conclusions

- Inverse modeling is a powerful tool in examining how groundwater may evolve over different flow paths
- It is important to know as much about the different solutions to get accurate models
- Arsenic levels in this study area are affected by Fe and Mn oxyhydroxides, which are affected by the redox environment
- As levels are also affected by sulfate concentration levels
- As compounds, such as Barium Arsenate and Scorodite, are also affected by the concentration levels of As and other elements in them, as well as temperature and pH

References

Upadhyay, M.K., Shukla, A., Yadav, P., Srivastava, S., 2019, A review of arsenic in crops, vegetables, animals and food products: Food Chemistry, v. 276, p. 608-618.

Sharif, M.U., Davis, R.K., Steele, K.F., Kim, B., Kresse, T.M., Fazio, J.A., 2008, Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA): Journal of Hydrology, v. 350, p. 41-55.

EPA, 2024, Drinking Water Arsenic Rule History, https://www.epa.gov/dwreginfo/drinking-water-arsenic-rule-history, accessed 30 April 2025.

WHO, 2011, Arsenic in Drinking-water, https://www.who.int/docs/default-source/wash-documents/wash-chemicals/arsenic-background-document.pdf, accessed 30 April 2025.

Questions?