HEALTH CONCERNS AROUND DISSOLVED RADON AND URANIUM IN THE GROUND WATER OF HYLAS, VA

Alicia Garcia NDSU Geochemistry Fall 2012

ORIGINAL STUDY OBJECTIVE

- To compare U and ²²²Rn concentrations and geochemistry of ground water obtained three different rock formations
 - 1. Sheared Mylonitic Rocks
 - 2. Unsheared Granitic and Metamorphic Rocks
 - 3. Weathered Saprolite Overlying 1 and 2
- Examine the effect of rock composition and texture on dissolved ²²²Rn concentrations
- Primarily test water quality in relation to Radon
- My Goal?

STUDY AREA

Location of Study Area

PHREEQC PROCEDURE

- Took the averages of the major ions, elements and trace elements and ran them through the program
 - Some of the elements weren't detected in the study
 - For the trace elements, many didn't have an average because they were all less than a certain amount
 - I took the value it was less than as my input
 - Some of the elements they tested were not listed in PHREEQC database

GRANITIC RESULTS (1)

	Phase	ST	log IAP	log KT	pH = 5.7
	riiase	31	IUG IAF	IUG KI	⊔CO - 62ppm
	Al (OH) 3 (a)	-3.15	8.28	11.43	HCO ₃ = $62ppm$
	Albite				NaAlSi308 DO = 4.9ppm
	Alunite	-5.24	-5.46	-0.21	KAI3 (304) 2 (0f) 6
	Anhydrite			-4.34	
	Anorthite	-10.33	-30.31	-19.99	CaA12Si208
	Aragonite	-3.17	-11.45	-8.28	CaCO3
	Barite	-1.09	-11.22	-10.13	BaSO4
	Ca-Montmorillo	nite -1.	.44 -47.	84 -46.	40 Ca0.165Al2.33Si3.67O10(OH)2
	Calcite	-3.02	-11.45	-8.43	CaCO3
	Celestite	-4.18	-10.80	-6.62	SrS04
€	Chalcedony	0.05	-3.61	-3.66	SiO2
	Chlorite (14A)	-31.02	40.94	71.96	Mg5Al2Si3O10 (OH) 8
	Chrysotile	-19.48	13.91	33.39	Mg3Si2O5 (OH) 4
	CO2 (g)	-0.95	-2.30	-1.35	CO2
	Dolomite				CaMg (CO3) 2
	Fe (OH) 3 (a)				Fe (OH) 3
	Fluorite			-10.72	
'n	Cibbeite	-0.37	9.28	8.65	<u>71 (OH) 3</u>
	Goethite	3.50		-0.66	
	Gypsum				Ca504:2H2O
	H2 (g)			-3.11	
	H2O(g)			1.76	
	Halite			1.56	
	Hausmannite	28.85			Mn304
	Hematite	8.96			Fe203
	IIIIIte				KU. 6MgO. 25A12.3Si3.5O10 (OH) 2
	Jarosite-K				KFe3 (SO4) 2 (OH) 6
	K-feldspar				KA1Si308
	K-mica	1.48	15.58		· ·
	Kaolinite	1.07	9.33	8.27	
	Manganite	-10.59	14.75	25.34	Mnooh

GRANITIC RESULTS (2)

	Melanterite	-7.22	-9.55	-2.33	FeSO4:7H2O
	02 (g)	-47.64	-50.46	-2.82	02
	Pyrochroite	-10.15	5.05	15.20	Mn (OH) 2
	Pyrolusite	-18.46	24.45	42.92	MnO2
\rightarrow	Quartz	0.51	-3.61	-4.12	Si02
	Rhodochrosite	-2.99	-14.08	-11.10	MnCO3
	Sepiolite	-12.76	3.25	16.01	Mg2Si3O7.50H:3H2O
	Sepiolite(d)	-15.41	3.25	18.66	Mg2Si3O7.50H:3H2O
	Siderite	-1.91	-12.75	-10.83	FeCO3
	SiO2(a)	-0.82	-3.61	-2.79	Si02
	Smithsonite	-3.74	-13.64	-9.90	ZnCO3
	Strontianite	-4.73	-14.00	-9.27	SrCO3
	Talc	-15.81	6.68	22.49	Mg3Si4O10(OH)2
	Willemite	-8.73	7.39	16.12	Zn2SiO4
	Witherite	-5.82	-14.42	-8.59	BaCO3
	Zn (OH) 2 (e)	-6.00	5.50	11.50	Zn (OH) 2

MYLONITIC RESULTS

Phase SI log IAP log KT pH =	pH = 6.5		
•	$_{3} = 99.3 \text{ppm}$		
Aradonice 1.05 -10.15 -0.20 Cacos			
Barite $-0.97 - 11.09 - 10.12$ BaSO4 $\square \square \square$	3.7ppm		
Calcide -1.70 -10.13 -0.43 Caco3	• •		
Celestite -3.84 -10.46 -6.62 SrSO4 TDS	= 175 ppm		
→ Chalcedony 0.15 -3.51 -3.66 SiO2	– 173 ppiii		
Chrysotile -13.09 20.25 33.34 Mg3Si2O5(OH)4			
CO2(g) -1.55 -2.91 -1.36 CO2			
Dolomite -3.90 -20.78 -16.88 CaMα(CO3)2			
Fe(OH)3(a) 0.24 5.14 4.89 Fe(OH)3			
Fluorite 1.20 -9.51 -10.71 CaF2			
Goethite 5.81 5.14 -0.67 FeOOH			
Gypsum -3.25 -7.63 -4.56 Ca504:ZnZ0			
H2(g) -21.00 -24.11 -3.11 H2			
H2O(g) -1.75 -0.00 1.75 H2O			
Halite -8.54 -6.97 1.56 NaCl			
Hausmannite _21 29 42 01 63 30 Mn304			
Hematite 13.58 10.27 -3.31 Fe203			
Varuation -0.74 -17.23 -0.30 KFe3(304) 2 (OH) 6			
Manganite -7.84 17.50 25.34 MnOOH			
Melanterite -7.23 -9.56 -2.32 FeSO4:7H2O			
O2 (g) -44.30 -47.12 -2.82 O2			
Pyrochroite -8.20 7.00 15.20 Mn (OH) 2			
Pyrolusite -14.84 28.00 42.85 MnO2			
Quartz 0.61 -3.51 -4.12 SiO2 Rhodochrosite -1.63 -12.73 -11.10 MnCO3			
Sepiolite -8.35 7.65 16.00 Mg2Si3O7.5OH:3H2O			
Sepiolite(d) -11.01 7.65 18.66 Mg2Si3O7.5OH:3H2O Siderite -1.03 -11.86 -10.83 FeCO3			
SiO2(a) -0.72 -3.51 -2.79 SiO2 Smithsonite -2.60 -12.50 -9.90 ZnCO3			
Strontianite -3.50 -12.77 -9.27 SrC03			
Talc -9.21 13.23 22.44 Mg3Si4O10(OH)2			
Willemite -5.13 10.96 16.08 Zn2SiO4			
Witherite -4.80 -13.40 -8.59 BaCO3			
Zn (OH) 2 (e) -4.27 7.23 11.50 Zn (OH) 2			

METAMORPHIC RESULTS

	Phase	SI log IA	P log KT	pH = 5.9
→	Anhydrite Aragonite Barite Calcite Celestite Chalcedony Chrysotile CO2(g) Dolomite Fe(OH)3(a) Fluorite Goethite	-3.84 -8.18 -2.93 -11.22 -1.06 -11.18 -2.78 -11.22 -4.26 -10.88 -0.01 -3.66 -17.14 16.14 -1.19 -2.56 -5.88 -22.77 -1.42 3.47 -3.86 -14.56 4.16 3.47	2 -8.29 3 -10.11 2 -8.44 3 -6.62 6 -3.65 4 33.27 6 -1.36 7 -16.89 7 4.89 6 -10.70	CaCO3 BaSO4 CaCO3 SrSO4 SiO2 Mg3Si2O5 (OH) 4 CO2 CaMg (CO3) 2 Fe (OH) 3
	H2(g) H2O(g) Halite Hausmannite Hematite Jarosite-K Manganite	-3.59 -8.16 -19.80 -22.93 -1.73 -0.06 -8.85 -7.29 -27.43 35.74 10.29 6.93	1 -3.11 0 1.73 9 1.56 4 63.17 3 -3.35 3 -8.55	Ca304: 2H2O H2 H2O NaC1 Mn3O4 Fe2O3 KFe3 (SO4) 2 (OH) 6
>	Melanterite 02 (g) Pyrochroite Pyrolusite Quartz Rhodochrosite Sepiolite Sepiolite (d) Siderite	-7.22 -9.56 -46.52 -49.36 -9.89 5.33 -17.65 25.13 0.44 -3.66 -2.96 -14.06 -11.34 4.63 -14.01 4.63 -1.74 -12.58	4 -2.32 4 -2.83 1 15.20 1 42.76 6 -4.11 6 -11.10 15.99 18.66 8 -10.84	FeSO4:7H2O O2 Mn (OH) 2 MnO2 SiO2 MnCO3 Mg2Si3O7.5OH:3H2O Mg2Si3O7.5OH:3H2O FeCO3
	SiO2(a) Smithsonite Strontianite Talc Willemite Witherite Zn(OH)2(e)	-8.09 7.95 -5.63 -14.22	7 -9.91 2 -9.27 1 22.38 5 16.04 2 -8.59	ZnCO3 SrCO3 Mg3Si4O10(OH)2 Zn2SiO4 BaCO3

PRELIMINARY OBSERVATIONS

- My results were different from theirs
 - More than SiO₂ precipitated
 - Simulating weathering?
 - Relationship between Rock Types and U Concentrations
 - These bedrocks may be U-containing rocks naturally
 - Poses a threat

URANIUM AND RADON

- Average ²²²Rn in ground water samples
 - Granite: 14,900 pCi/L
 - Mylonite: 5,800 pCi/L
 - Metamorphic: 550 pCi/L
- EPA MCL = 300 pCi/L
- Average U in ground water samples
 - Granite: 0.5ppb
 - Mylonite: 0.6ppb
 - Metamorphic: 0.1ppb
- EPA Standard: 20ppb

DISCUSSION

- As more Ferric Oxide precipitate, more surfaces are exposed for adhesion of U(VI)
 - Uranyl ion combines with CO₃ → adhesion to Ferric Oxides
- This adhesion give U time to decay to form
 ²²²Rn
- Raises many Concern
 - Weathering increase, so does ²²²Rn
 - Health risks
 - Safe Drinking Water?

CONCERNS

- The activity of Radon in the sampled groundwater poses a risk to those using this as a source of drinking water
 - 1996 vs 2012
 - Ingesting vs inhalation.
 - Fear the Radon gas in homes
- EPA Standards
 - According to the Safe Drinking Water Act (revised 1996) 2 options to lower Radon in drinking water
 - Based on States'
 - choice

CONCERNS

- Health Risks Associate with Radon
 - Lung Cancer (primary)
 - Emphysema
 - Pulmonary fibrosis
 - Chronic interstitial pneumonia
 - Silicosis
 - Respiratory lesions

CONCLUSIONS

- Appears to be a connection between rock type and amount of dissolve Radon present in the substrate
 - In relation to U
 - Shearing vs. non shearing (Mylonite)
- The drinking water should be carefully monitored.
- Look more into the relationship between rock type and radionuclides

SOURCES

- Stanton, M. R., Wanty, R. B., Lawrence, E. P., & Briggs, P. H. (1996) Dissolved Radon and Uranium, and Ground-Water Geochemistry in an Area near Hylas, Virginia. U.S. Geological Survey Bulletin 2070
- Parkhurst, D. L., & Appelo, C. A. J. (1999) User's Guide To PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Department of Interior
- EPA (May 12, 2012) Proposed Radon in Drinking Water Regulation. Retrieved from http://water.epa.gov/lawsregs/rulesregs/sdwa/radon/regulations.cfm
- EPA (April 12, 2012) Radon. Retrieved from <u>http://www.epa.gov/radiation/radionuclides/</u> radon.html#affecthealth