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Background/Significance:

¢ Constraints on in situ experiments on nitrate leaching make collecting data difficult

¢ PHREEQC allowed for a numerical sitmulation model to be applied to simulate reactions
and migration of nitrate under a wider variety of conditions

¢ Utilized 1_D Hydrogeochemical software to simulate an in situ horizontal well system

¢ Key data blocks in this paper include:
¢ SOLUTION, COPY, RATES, KINETICS, TRANSPORT

Findings:

¢ Builds a conceptual model of geochemistry with PHREEQC software

¢ Used to predict the NO3- -N Concentration law (Assumption: the flow rate continues to change)

& Theoretical data and related relationships obtained can provide references for actual nitrate
restoration projects and provide practical guidance for subsequent work

(L et al., 2021)



Background

& AG expansion is currently the leading driver of habitat loss, contributing to the decline of
animals, plant, and microbial diversity

& Soils are depleted/degraded to meet the increasing demand for food and chemical
fertilizers applied to improve yields

¢ Can lead to loss of biodiversity and pollution of surrounding ecosystems

(Akanmu et al., 2021)



Simplified Nitrogen Cycle
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Microbes

What 1s typically the limiting
nutrient for soil microbes?

(Polojarvi et al., 2020)



Simplified Nitrogen Cycle
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(Chen et al., 2018; Dlamini et al., 2020; Ejack et al., 2021; Li et al., 2021; Song et al., 2023)



Objectives

& Develop a model in PHREEQCi to simulate an addition of organic carbon (acetate) to a
soil profile and determine its impacts on denitrification.

¢ Determine the impacts of different levels of acetate additions on the amount of nitrate
remaining in the soil profile.



Methods- Site Information
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Methods- PHREEQC

& Simplified 1D Transport Model

& Creation of a 1D column model where solutes move, mix, and react chemically along a flow path

¢ Low (2 mmol), Ideal (13 mmol), and High (26 mmol) Acetate additions simulated

Movement Direction

Solution 0 '

SOLUTION 1-10
Fill the initial solution SOLUTION 1-10 sequentially

Figure 1: Input and calculation process of PHREEQCi model

(L et al., 2021)



Methods- PHREEQC cont...

REACTION 1 ¢ REACTION

5 steps ¢ Define any solutions used in
simulation not defined in the
database and how much to add

& RATES

& Defines a custom rate 'law anc_i the
math behind the kinetic reaction

KINETICS 1 ¢ KINETICS

Denitrification

~formula CH3COO- 1 NO3- 1 ¢ Applies the RATES expression to
-m 1 specific cells

—-steps 20 in 86400 seconds

First-order with resp
& MOL ("CH3COOD-") * MOL("HO3-")

& Specifies how much reactant present
TRANSEORT and the time steps to run it

-cells 10
& TRANSPORT

¢ Defines how many cells, how fast
things move (advection) and how they

—-flow direction forward
-boundary conditions constant A g
—dispersivities 0.01 spread (Dispersion)
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(L et al., 2021)



Results/Data
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¢ Low and ideal acetate additions did little
to decrease the nitrate content in the soil

& High acetate drastically decreased the
nitrate concentration in the soil

¢ Plateau at which nitrate 1s no longer
being denitrified and thus acetate is no
longer being used.
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& Similar trends to nitrate and acetate, ideal
and low have minimal impact and high
has drastic impacts

¢ O2 decreased with high acetate

¢ N2 increased with high acetate

¢ Indicating denitrification
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& Similar trends to nitrate and acetate, ideal
and low have minimal impact and high
has drastic impacts

¢ pH increases slightly with high acetate
¢ Pe decreases slightly with high acetate



Results/Data
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® C:N ratio increased as acetate was added

¢ Adding more carbon into the solution and
removing nitrogen through denitrification



Conclusions

& At higher rates of acetate additions, nitrate did decrease along with O2 and redox potential
of the system

¢ An improved knowledge of PHREEQC could lead to some better, more accurate models of
what actually occurs in the soil

¢ External water transport models and microbial activity models to pair with PHREEQC
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Questions?
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