Impact of Organic Carbon Substrate Additions on Denitrification in Soils

Rachel Clarkson

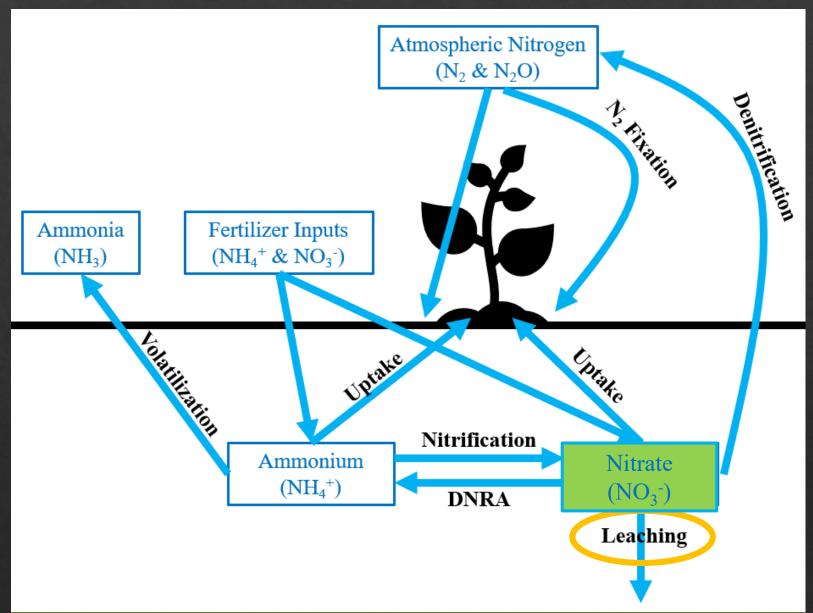
NDSU Geochemistry May 2025

Groundwater Nitrate Bioremediation Simulation of In Situ Horizontal Well by Microbial Denitrification Using PHREEQC

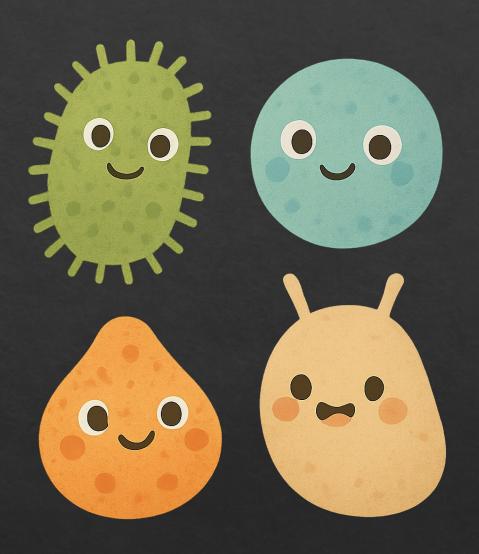
Peigui Liu D· Gang Wang · Manting Shang · Mingchao Liu

Background/Significance:

- ♦ Constraints on in situ experiments on nitrate leaching make collecting data difficult
- ♦ PHREEQC allowed for a numerical simulation model to be applied to simulate reactions and migration of nitrate under a wider variety of conditions
- Utilized 1_D Hydrogeochemical software to simulate an in situ horizontal well system
- Key data blocks in this paper include:
 - ♦ SOLUTION, COPY, RATES, KINETICS, TRANSPORT

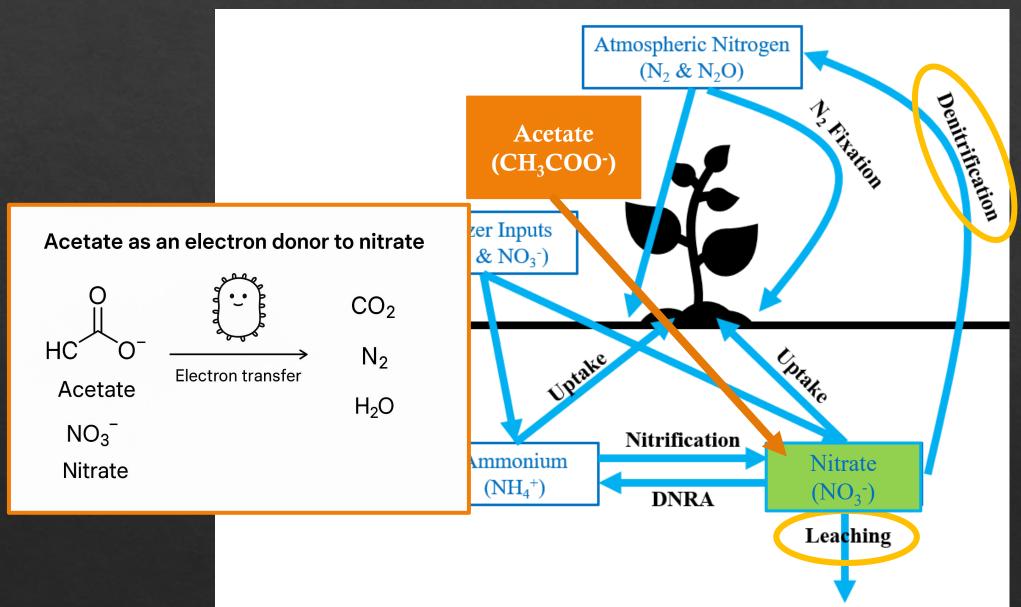

Findings:

- Builds a conceptual model of geochemistry with PHREEQC software
 - ♦ Used to predict the NO3- -N Concentration law (Assumption: the flow rate continues to change)
- Theoretical data and related relationships obtained can provide references for actual nitrate restoration projects and provide practical guidance for subsequent work

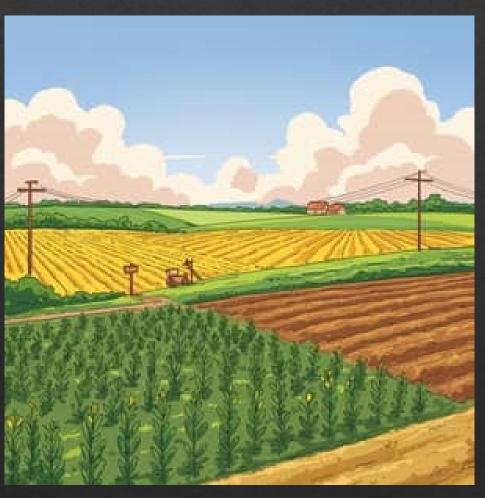

Background

- ♦ AG expansion is currently the leading driver of habitat loss, contributing to the decline of animals, plant, and microbial diversity
- Soils are depleted/degraded to meet the increasing demand for food and chemical fertilizers applied to improve yields
 - ♦ Can lead to loss of biodiversity and pollution of surrounding ecosystems

Simplified Nitrogen Cycle


Microbes

What is typically the limiting nutrient for soil microbes?


Simplified Nitrogen Cycle

Objectives

- ♦ Develop a model in PHREEQCi to simulate an addition of organic carbon (acetate) to a soil profile and determine its impacts on denitrification.
- ♦ Determine the impacts of different levels of acetate additions on the amount of nitrate remaining in the soil profile.

Methods- Site Information

- Recently Converted Cropland from Forest
- Applied a bunch of Nitrate to the field to increase the productivity of their crops
- Groundwater nitrate levels came back elevated, so now actions are being taken to try to remediate this issue

```
SOLUTION 0
    temp 25
    pH 7
    pe 4
    redox pe
    units mmol/kgw
    density 1
    Ca 59
    Cl 36
    K 63
    Mg 37
    Na 11
    S(6) 62
    N(5) 12
    N(-3) 5
    water 1 # kg
```

Methods-PHREEQC

- Simplified 1D Transport Model
 - ♦ Creation of a 1D column model where solutes move, mix, and react chemically along a flow path
- ♦ Low (2 mmol), Ideal (13 mmol), and High (26 mmol) Acetate additions simulated

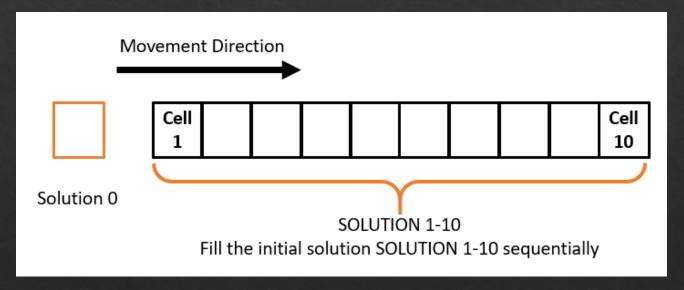


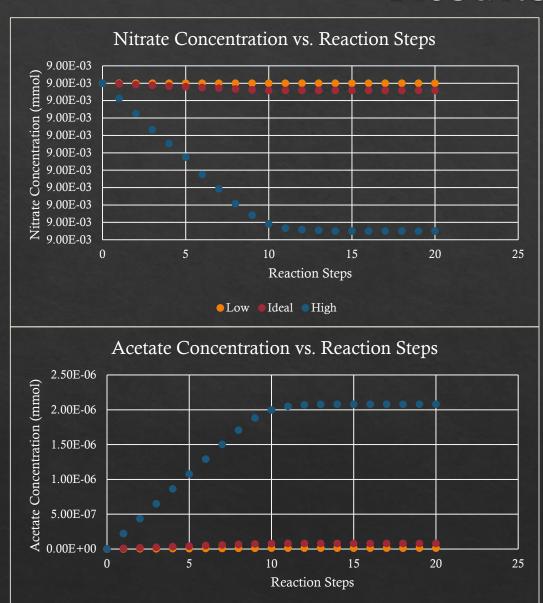
Figure 1: Input and calculation process of PHREEQCi model

Methods-PHREEQC cont...

```
REACTION 1
    NaCH3COO 0.0026
    0.0026 moles in 5 steps
RATES
Denitrification
10 REM Denitrification rate: First-order with respect to acetate and nitrate
20 rate = -0.01 * MOL("CH3COO-") * MOL("NO3-")
30 SAVE rate
-end
KINETICS 1
    Denitrification
        -formula CH3COO- 1 NO3- 1
        -m 1
        -steps 20 in 86400 seconds
TRANSPORT
    -cells 10
    -shifts 20
    -time step 3600
    -lengths 0.1
    -flow direction forward
    -boundary conditions constant
    -dispersivities 0.01
    -diffusion_coefficient le-9
```

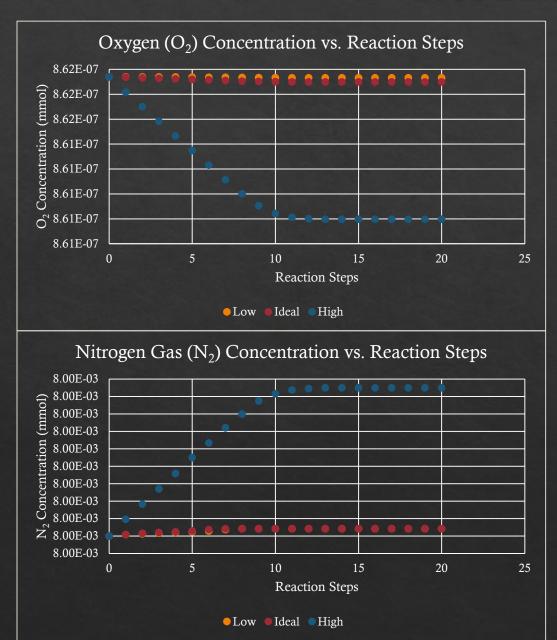
♦ REACTION

 Define any solutions used in simulation not defined in the database and how much to add

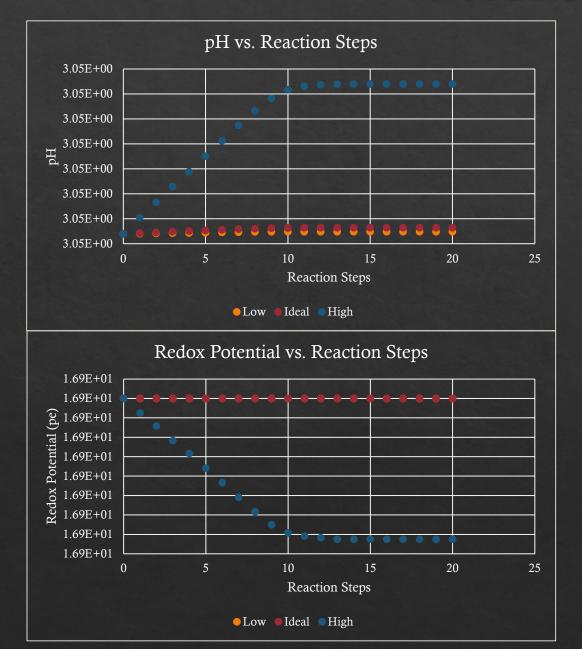

 Defines a custom rate law and the math behind the kinetic reaction

⋄ KINETICS

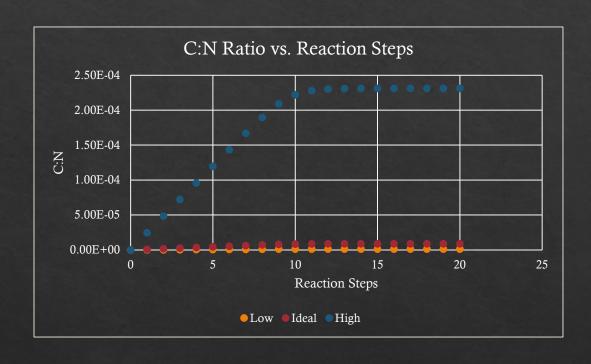
- Applies the RATES expression to specific cells
- Specifies how much reactant present and the time steps to run it


♦ TRANSPORT

 Defines how many cells, how fast things move (advection) and how they spread (Dispersion)



● Ideal ● High


- ♦ Low and ideal acetate additions did little to decrease the nitrate content in the soil
- High acetate drastically decreased the nitrate concentration in the soil
- ♦ Plateau at which nitrate is no longer being denitrified and thus acetate is no longer being used.

- Similar trends to nitrate and acetate, ideal and low have minimal impact and high has drastic impacts
- ♦ O2 decreased with high acetate
- ♦ N2 increased with high acetate
 - ♦ Indicating denitrification

- ♦ Similar trends to nitrate and acetate, ideal and low have minimal impact and high has drastic impacts
- PH increases slightly with high acetate
- ♦ Pe decreases slightly with high acetate

- ♦ C:N ratio increased as acetate was added
 - Adding more carbon into the solution and removing nitrogen through denitrification

Conclusions

- ♦ At higher rates of acetate additions, nitrate did decrease along with O2 and redox potential of the system
- ♦ An improved knowledge of PHREEQC could lead to some better, more accurate models of what actually occurs in the soil
 - ♦ External water transport models and microbial activity models to pair with PHREEQC

References

- Akanmu, A. O., Babalola, O. O., Venturi, V., Ayilara, M. S., Adeleke, B. S., Amoo, A. E., Sobowale, A. A., Fadiji, A. E., & Glick, B. R. (2021). Plant Disease Management: Leveraging on the Plant-Microbe-Soil Interface in the Biorational Use of Organic Amendments. *Frontiers in Plant Science*, 12, 700507. https://doi.org/10.3389/fpls.2021.700507
- Chen, S., Wang, F., Zhang, Y., Qin, S., Wei, S., Wang, S., Hu, C., & Liu, B. (2018). Organic carbon availability limiting microbial denitrification in the deep vadose zone. *Environmental Microbiology*, 20(3), 980–992. https://doi.org/10.1111/1462-2920.14027
- Dlamini, J. C., Chadwick, D. R., Hawkins, J. M. B., Martínez, J. M., Scholefield, D., Ma, Y., & Cardenas, L. M. (2020). Evaluating the potential of different carbon sources to promote denitrification. *The Journal of Agricultural Science*, 158(3), 194–205. https://doi.org/10.1017/S0021859620000520
- Ejack, L., Whalen, J. K., & Madramootoo, C. A. (2021). Carbon availability limits the denitrification potential of sandy loam soil from corn agroecosystems with long-term tillage and residue management. *Canadian Journal of Soil Science*, 101(1), 172–176. https://doi.org/10.1139/CJSS-2020-0097
- Li, Z., Reichel, R., Xu, Z., Vereecken, H., & Brüggemann, N. (2021). Return of crop residues to arable land stimulates N2O emission but mitigates NO3– leaching: a meta-analysis. *Agronomy for Sustainable Development*, 41(5), 1–17. https://doi.org/10.1007/S13593-021-00715-X
- Liu, P., Wang, G., Shang, M. *et al.* Groundwater Nitrate Bioremediation Simulation of In Situ Horizontal Well by Microbial Denitrification Using PHREEQC. *Water Air Soil Pollut* **232**, 356 (2021). https://doi.org/10.1007/s11270-021-05313-x
- Palojärvi, A., Kellock, M., Parikka, P., Jauhiainen, L., & Alakukku, L. (2020). Tillage System and Crop Sequence Affect Soil Disease Suppressiveness and Carbon Status in Boreal Climate. *Frontiers in Microbiology*, *11*, 534786. https://doi.org/10.3389/fmicb.2020.534786
- Soil solution. (n.d.). Retrieved May 3, 2025, from https://nutrients.ifas.ufl.edu/nutrient_pages/bsfpages/SoilSolution.htm
- Song, W. H., Hu, C., Luo, Y., Clough, T. J., Wrage-Mönnig, N., Ge, T., Luo, J., Zhou, S., & Qin, S. (2023). Nitrate as an alternative electron acceptor destabilizes the mineral associated organic carbon in moisturized deep soil depths. *Frontiers in Microbiology*, 14.

Questions?