Utilization of wastewater as phosphorus fertilizer & modeling sorption to soil as mediation of P loss

Megan Culpitt

Geochemistry (Spring 2025)

Phosphorous

- Plant essential nutrient
- PO₄³⁻ is plant available
 - Comes mostly from mineral sources in inorganic forms
 - Availability influenced by mineral solubility
 - Can leave soil through leaching or erosion
- Usually supplemented by fertilizer
 - Rock phosphate (Ca10(PO4)6(X)2)
 - Fluorapatite

Photo courtesy of IISD

Photo courtesy of MinDat

Factors impacting P availability

· pH

- More soluble around neutral pH
 - Binds with Ca at high pH
 - · Binds with Al and Fe

Organic matter content

- · C promotes P mineralization
- Aeration
 - Aeration promotes adsorption
- Eh
 - More available when oxidized
 - Reduced form is prone to leaching

Photo courtesy of UMN

Why use wastewater?

- Byproduct that is reported to supply >70% of P for plant growth (Davand et al.)
 - Through precipitation of struvite (Omidire, 2022)
- Sustainable alternative to rock phosphate
- Environmental concerns and application limits
 - Depends on the industry

Can we modify wastewater for use as a source of P fertilizer?

Photo courtesy of Davand, et al, 2022

Wastewater composition

- · Water was collected in West Azerbaijan, Iran
 - 70% domestic & 30% Industrial
- We are not interested in EC or BOD
 - Do not impact the ions within water
 - Tells you about those ions at a specific condition
- $TOC \rightarrow acetate$
- IC \rightarrow carbon

Fig. 1. Location map of the soil sampling area, Boukan province, West Azarbaijan, Iran.

	pН	EC	BOD ₅	COD	TOC	IC	PO_4	Cd	Cu	Co	Ni	Pb	Zn
		$(dS m^{-1})$	(mg L	¹)				$(\mu g L^{-1}$)				
Treated wastewater	7.82	6.04	20	40	33.8	135	7.5	1.20	8.52	0.027	12.12	45.31	325

Original output

```
-----Description of solution-----
                            pH = 7.820
                            pe = 4.000
                  Density (g/cm3) = 0.99710
                     Volume (L) = 1.00297
                 Viscosity (mPa s) = 0.89002
                 Activity of water = 1.000
            Ionic strength (mol/kgw) = 7.162e-04
                Mass of water (kg) = 1.000e+00
            Total alkalinity (eq/kg) = 7.740e-04
                Total CO2 (mol/kg) = 2.250e-06
                 Temperature (oC) = 25.00
            Electrical balance (eq) = -1.006e-03
Percent error, 100*(Cat-|An|)/(Cat+|An|) = -98.08
                      Iterations = 10
                        Total H = 1.110140e+02
                        Total 0 = 5.550781e+01
                                                                                          mole V
                                                         Log
                                                                     Log
                                                                                  Log
                       Molality
                                     Activity Molality Activity
                                                                                          cm3/mol
  Species
                                                                               Gamma
 P
                  2.422e-04
     HPO4-2
                         1.988e-04
                                        1.762e-04
                                                      -3.702
                                                                    -3.754
                                                                                -0.052
                                                                                               (0)
     H2P04-
                                        4.208e-05
                         4.336e-05
                                                      -4.363
                                                                    -4.376
                                                                                 -0.013
                                                                                               (O)
     PO4-3
                         6.453e-09
                                        4.910e-09
                                                                                               (0)
                                                      -8.190
                                                                    -8.309
                                                                                 -0.119
     H3P04
                                        8.955e-11
                         8.955e-11
                                                      -10.048
                                                                                  0.000
                                                                   -10.048
                                                                                               (0)
     CoHPO4
                                        6.503e-11
                                                      -10.187
                         6.503e-11
                                                                   -10.187
                                                                                  0.000
                                                                                               (0)
```

PO_4^- & pH

- What if we change pH?
 - Optimal pH of wastewater is between 6.5 to 8.5 (J mark)

		pH	= 6.500			
			= 4.000			
	Densi	ty (g/cm3)	= 0.99710)		
		Volume (L)	= 1.00297	7		
	Viscosi	ty (mPa s)	= 0.89002	2		
	Activit	y of water	= 1.000			
	Ionic strength	(mol/kgw)	= 4.776e-	-04		
	Mass of	water (kg)	= 1.000e+	-00		
	Total alkalini	ty (eq/kg)	= 6.062e-	-04		
	Total CO	2 (mol/kg)	= 2.250e-	-06		
	-	ature (oC)				
	Electrical ba			-04		
Percent error	, 100*(Cat- An)/					
		Iterations				
			= 1.110141e			
		Total O	= 5.550781e	2+01		
			Log	Log	Log	mole V
Species	Molality	Activity	Molality	Activity	Gamma	cm3/mol
2	.422e-04					
H2PO4-	1.991e-04	1.943e-04	-3.701	-3.712	-0.011	(0)
	4.300e-05	3.894e-05	-4.367	-4.410	-0.043	(0)
HPO4-2						
HPO4-2 H3PO4	8.638e-09	8.638e-09	-8.064	-8.064	0.000	(0)
		8.638e-09 5.193e-11			-0.098	(0)

-----Description of solution-----

		Desc	ription of	30	lution			
			pH	-	8.500			
			pe	=	4.000			
		Densit	y (g/cm3)	=		0		
			olume (L)					
			y (mPa s)					
			of water			_		
		Ionic strength				-04		
		_	ater (kg)					
		Total alkalinit						
			(mol/kg)					
		Tempera	ture (oC)	=	25.00			
		Electrical bal	ance (eq)	=	-1.044e	-03		
Pe	ercent error, 1	100*(Cat- An)/(Cat+ An)	=	-98.46			
		I	terations	=	10			
			Total H	=	1.110139	e+02		
			Total O	=	5.550781	e+01		
					Log	Log	Log	mole V
	Species	Molality	Activity	I	Molality	Activity	Gamma	cm3/mol
P	2.	422e-04						
	HPO4-2	2.316e-04	2.045e-04		-3.635	-3.689	-0.054	(0)
	H2PO4-	1.052e-05	1.020e-05		-4.978	-4.991	-0.013	(0)
	PO4-3	3.616e-08	2.727e-08		-7.442	-7.564	-0.122	(0)
	CoHPO4	7.011e-11	7.011e-11		-10.154	-10.154	0.000	(0)
	H3P04	4.537e-12	4.537e-12		-11.343	-11.343	0.000	(0)

Changing Fe and Al activities

- More Fe and Al are available to bind with PO4
 - Less available solution P
- Legal limits: (LIQTECH)

Al < 0.2 ppm

Spe	cies	Molality	Activity	Log Molality	Log Activity	Log Gamma	mole V cm3/mol
Al		7.413e-06					
	Al (OH) 4-	7.321e-06	7.103e-0	6 -5.13	35 -5.149	-0.013	(0)
	A1 (OH) 3	8.481e-08	8.481e-0	8 -7.07	72 -7.072	0.000	(0)
	A1 (OH) 2+	6.584e-09	6.389e-0	9 -8.18	81 -8.195	-0.013	(0)
	AlOH+2	1.364e-11	1.209e-1	1 -10.86	55 -10.918	-0.052	(0)
	A1+3	2.390e-14	1.817e-1	4 -13.62	22 -13.741	-0.119	(0)
P		2.422e-04					
	HPO4-2	1.988e-04	1.762e-0	4 -3.70	2 -3.754	-0.052	(0)
	H2PO4-	4.335e-05	4.207e-0	5 -4.36	3 -4.376	-0.013	(0)
	PO4-3	6.455e-09	4.909e-0	9 -8.19	0 -8.309	-0.119	(0)
	H3PO4	8.953e-11	8.953e-1	1 -10.04	8 -10.048	0.000	(0)
	CoHPO4	6.499e-11	6.499e-1	1 -10.18	7 -10.187	0.000	(0)

Fe < 7 ppm

			Log	Log	Log	mole V
Species	Molality	Activity	Molality	Activity	Gamma	cm3/mol
Fe (2)	1.274e-06					
Fe+2	7.630e-07	6.707e-0	7 -6.1	17 -6.173	-0.056	(0)
FeHPO4	4.684e-07	7 4.684e-0	7 -6.3	29 -6.329	0.000	(0)
FeOH+	1.832e-08	1.776e-0	08 -7.7	37 -7.750	-0.013	(0)
FeH2PO4+	1.452e-08	1.408e-0	08 -7.8	38 -7.851	-0.013	(0)
Fe (3)	1.241e-04					
Fe (OH) 2+	7.143e-05	6.926e-0	5 -4.1	46 -4.160	-0.013	(0)
Fe (OH) 3	4.949e-05	4.949e-0	5 -4.3	06 -4.306	0.000	(0)
Fe (OH) 4-	3.16le-06	3.065e-0	6 -5.5	00 -5.514	-0.013	(0)
FeHPO4+	9.310e-10	9.028e-1	-9.0	31 -9.044	-0.013	(0)
FeOH+2	3.028e-10	2.676e-1	-9.5	19 -9.572	-0.054	(0)
Fe (Acetate)2+ 7.386e-15	7.15le-1	5 -14.1	32 -14.146	-0.014	(0
Fe (Acetate)+2 4.147e-15	3.645e-l	5 -14.3	82 -14.438	-0.056	(0)
Fe+3	8.245e-16	6.230e-1	6 -15.0	84 -15.205	-0.122	(0
FeH2PO4+2	5.604e-16	4.955e-1	-15.2	51 -15.305	-0.053	10
P	2.422e-04					
HPO4-2	1.985e-04	1.754e-0	4 -3.7	02 -3.756	-0.054	(0)
H2PO4-	4.319e-05	4.189e-0	5 -4.3	65 -4.378	-0.013	(0)
FeHPO4	4.684e-07	4.684e-0	7 -6.3	29 -6.329	0.000	(0)
FeH2PO4+	1.452e-08	1.408e-0	8 -7.8	38 -7.851	-0.013	(0)
PO4-3	6.468e-09	4.887e-0	9 -8.1	89 -8.311	-0.122	(0)
FeHPO4+	9.310e-10	9.028e-1	0 -9.0	31 -9.044	-0.013	(0)
H3P04	8.914e-11	8.914e-1	1 -10.0	50 -10.050	0.000	(0)
CoHPO4	6.459e-11	6.459e-1	1 -10.1	90 -10.190	0.000	(0)
FeH2P04+2	5.604e-16	4.955e-1	6 -15.2	51 -15.305	-0.053	(0)

PO₄⁻& organic carbon

- Increasing carbon results in P mineralization
 - Double the amount of SOC

```
-----Description of solution-----
                                   pH = 7.820
                                   pe = 4.000
                         Density (g/cm3) = 0.99727
                            Volume (L) = 1.00297
                       Viscosity (mPa s) = 0.89003
                       Activity of water = 1.000
                  Ionic strength (mol/kgw) = 2.068e-03
                       Mass of water (kg) = 1.000e+00
                  Total alkalinity (eq/kg) = 3.466e-03
                      Total CO2 (mol/kg) = 2.250e-03
                        Temperature (oC) = 25.00
                   Electrical balance (eq) = -3.698e-03
      Percent error, 100*(Cat-|An|)/(Cat+|An|) = -99.64
                             Iterations = 10
                               Total H = 1.110162e+02
                               Total 0 = 5.551448e+01
P
               2.422e-04
   HPO4-2
                    2.009e-04
                                 1.647e-04 -3.697 -3.783
                                                                   -0.086
                                                                                  (0)
   H2PO4-
                    4.131e-05 3.932e-05 -4.384 -4.405
                                                                     -0.021
                                                                                  (0)
   PO4-3
                    7.218e-09 4.588e-09 -8.142 -8.338
                                                                     -0.197
                                                                                  (0)
   H3P04
                    8.368e-11 8.368e-11 -10.077
                                                         -10.077
                                                                       0.000
                                                                                  (0)
   CoHPO4
                    4.76le-11 4.76le-11 -10.322
                                                         -10.322
                                                                       0.000
                                                                                  (0)
```

Takeaways

For this particular wastewater:

- PO₄³⁻ is higher at higher pH
- Fe and Al don't really impact available P
- Increasing SOC doesn't impact available P

We can modify wastewater to serve as a viable source of P

- May not be economically feasible
- Within legal application limits

Modeling P sorption in PHREEQ

- Sorption is how sticky something is to a surface
- · Phosphate is an anion
 - Cannot be modeled in PHREEQc
 - · Davand, et. al, models in a different software
- Utilize PHREEQ-N-Titration-PO4-Adsorption Model
 - coding program developed in 2021 by USGS & Pennsylvania Water Science Center
 - Single or mixed solutions
 - Stagnant or flowing
 - · Can be modeled on a mass or mol basis

Photos courtesy of Nature Education

Graphical User Interfaces

- Windows 32-bit: <u>phreeqci-3.7.1-15876.msi</u> [13M] Executable, database files, examples, PDF documentation
- Windows 32-bit: Notepad + + interface Appelo's Notepad + + interface to PHREEQC version 3

Batch Versions of PHREEQC

- Windows 64-bit: <u>phreeqc-3.7.1-15876-x64.msi [16M]</u> Executable, database files, examples, PDF documentation
- MacOS (OS 10.7 10.12) 64bit: phreeqc-3.5.0-14000.dmg [12M] Executable, database files, examples, and PDF documentation
- Windows (any processor): <u>phreeqc-3.7.1-15876.zip [12M]</u> Source, CMake, database files, examples, PDF documentation
- Linux (any processor): <u>phreeqc-3.7.1-15876.tar.gz [12M]</u> Source, configure, database files, examples, PDF documentation

PhreeqcRM Reaction Module for Transport Models

- Windows (any processor): <u>phreeqcrm-3.7.1-15876.zip [7M]</u> Source, CMake, database files, examples, HTML documentation
- Any Platform (any processor): <u>phreeqcrm-3.7.1-15876.tar.gz [7M]</u> Source, configure, database files, examples, HTML documentation

IPhreeqc Modules

- Windows (any processor): <u>iphreeqc-3.7.1-15876.zip [13M]</u> Source with CMake, database files, examples, and documentation
- Linux (any processor): <u>iphreeqc-3.7.1-15876.tar.gz [13M]</u> Source with configure, database files, examples, and documentation
- Windows COM 32-bit: IPhreeqcCOM-3.7.1-15876-win32.msi [4M] COM server, CHM documentation
- Windows COM 64-bit: IPhreeqcCOM-3.7.1-15876-x64.msi [4M] COM server, CHM documentation (Both 32-bit and 64-bit COM versions should be installed on 64-bit versions of Windows)

IPhreeqc runs in the background of the PO₄³⁻ sorption GUI

The Bradley Run Case

- Spellman et al., 2021
 - This example is programmed into the downloaded zip file
- Simulates the interaction of stream water, municipal wastewater and mine drainage
- Shows that P sorption is impacted by available quantity of previously accumulated HMeO sorbent
- PO₄³⁻ is able to precipitate and thus sorb by reducing (Al)
 - Adjusts the of gibbsite and Al(OH)₃

P=0.48 Fe=0.19 Al=2.29 Mn=0.25 So=0 mg/L Fe 2.0% Mn 0.2% Al 97.8%

Conclusions

- We can now model sorption of both anions and cations!
 - Informs management practices to avoid P loss
 - Can be used for a wide variety of scenarios
- Lots more to be done and learn
 - In order to model this particular water, we would need to add ions to the database
- · For more information this software download can be found on the summary sheet

References

- Benavente, D., Brimblecombe, P., & Grossi, C. M. (2015). Thermodynamic calculations for the salt crystallisation damage in porous built heritage using PHREEQC. *Environmental Earth Sciences*, 74(3), 2297–2313. https://doi.org/10.1007/s12665-015-4221-1
- Carrillo, V., Fuentes, B., Gómez, G., & Vidal, G. (2020). Characterization and recovery of phosphorus from wastewater by combined technologies. *Reviews in Environmental Science and Bio/Technology*, 19(2), 389–418. https://doi.org/10.1007/s11157-020-09533-1
- Davand, H., Sepehr, E., Momtaz, H. R., & Ahmadi, F. (2022). Wastewater irrigation: An opportunity for improving soil phosphorus availability; PHREEQC modeling and adsorption studies. *Science of The Total Environment*, *851*, 158180. https://doi.org/10.1016/j.scitotenv.2022.158180
- Greisheim, K. (2025) Soil Fertility and Fertilizers: Lecture 4B (Essential Nutrients: Phosphorous). North Dakota State University.
- Interactive PHREEQ-N-Titration-PO4-Adsorption water-quality modeling tools to evaluate potential attenuation of phosphate and associated dissolved constituents by aqueous-solid equilibrium processes (software download) | U.S. Geological Survey. (2022, January 11). https://www.usgs.gov/software/interactive-phreeq-n-titration-po4-adsorption-water-quality-modeling-tools-evaluate
- "Industrial Wastewater Discharge Limits and Requirements." *LIQTECH*. Accessed April 28, 2025. https://liqtech.com/systems/industrial-wastewater-discharge-limits-and-requirements/.
- Li, Zhiwei, Hongwu Tang, Yang Xiao, Hanqing Zhao, Qingxia Li, and Fei Ji. "Factors Influencing Phosphorus Adsorption onto Sediment in a Dynamic Environment." *Journal of Hydro-Environment Research* 10 (March 1, 2016): 1–11. https://doi.org/10.1016/j.jher.2015.06.002.
- Nguyen, Minh Duc, Sirjana Adhikari, Deepak Surendhra Mallya, Michael Thomas, Aravind Surapaneni, Ellen M. Moon, and Nicholas A Milne. "Reuse of Aluminium-Based Water Treatment Sludge for Phosphorus Adsorption: Evaluating the Factors Affecting and Correlation between Adsorption and Sludge Properties." Environmental Technology & Innovation 27 (August 1, 2022): 102717. https://doi.org/10.1016/j.eti.2022.102717.
- Parkhurst, D. L., & Appelo, C. a. J. (2013). Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In *Techniques and Methods* (Nos. 6-A43). U.S. Geological Survey. https://doi.org/10.3133/tm6A43
- Spellman, Charles D., Peter M. Smyntek, Charles A. Cravotta, Travis L. Tasker, and William H. J. Strosnider. "Pollutant Co-Attenuation via in-Stream Interactions between Mine Drainage and Municipal Wastewater." Water Research 214 (May 1, 2022): 118173. https://doi.org/10.1016/j.watres.2022.118173.
- Torit, Jirawan, and Doungkamon Phihusut. "Phosphorus Removal from Wastewater Using Eggshell Ash." *Environmental Science and Pollution Research* 26, no. 33 (November 1, 2019): 34101–9. https://doi.org/10.1007/s11356-018-3305-3.

Pictures

- https://www.iisd.org/ela/blog/back-to-basics-how-and-why-phosphorus-cycles-through-a-lake/
- https://www.mindat.org/photo-409848.html
- https://blog-crop-news.extension.umn.edu/2020/03/how-to-prevent-fallow-syndrome-in-corn.html
- https://www.nature.com/scitable/knowledge/library/introduction-to-the-sorption-of-chemical-constituents-94841002/