Development of PHREEQC database for Surface complexation modelling of Arsenic on Nano magnetite

Tonoy K Das

NDSU Geochemistry 2018

Adsorption

Adsorption Process

https://www.google.com/search?q=adsorption+process&tbm:

Liu et al., 2015

Important factors for Adsorption

- Adsorbent surface
- Adsorbate species
- Removal Mechanisms

Magnetite Nanoparticles

(a)
$$Fe \stackrel{O}{\longrightarrow} Fe - OH_2$$
 + $H_2AsO_4^- \rightarrow Fe \stackrel{O}{\longrightarrow} Fe - O$ $Fe - O$ $As \stackrel{OH}{\longrightarrow} H_2O$, OH^-

(b)
$$Fe \stackrel{O}{\longrightarrow} Fe -OH$$
 + $H_3AsO_3^0 \rightarrow Fe \stackrel{O}{\longrightarrow} Fe -OH$ OH + H_2O

(c)
$$Fe \stackrel{O}{\longrightarrow} Fe - OH$$
 + $H_3AsO_3^0 \rightarrow Fe \stackrel{O}{\longrightarrow} Fe - OH - O-As \stackrel{OH}{\longrightarrow} + H^+$

(a) bidentate binuclear-bridging complex for As(V), (b) monodentate complex for As(III), (c) outer-sphere complex for As(III).

Yahoon et al., 2016

Surface Complexation in PHREEQC

Minteq database

```
Hfo sOH + H3AsO3 = Hfo sH2AsO3 + H2O
       log k 5.41
Hfo wOH + H3AsO3 = Hfo wH2AsO3 + H2O
       log k 5.41
Hfo s0H + H3As04 = Hfo sH2As04 + H20
       log k 8.67
Hfo wOH + H3AsO4 = Hfo wH2AsO4 + H2O
       log k 8.67
Hfo sOH + H3AsO4 = Hfo sHAsO4- + H2O + H+
       log k 2.99
Hfo wOH + H3AsO4 = Hfo wHAsO4- + H2O + H+
       log k 2.99
Hfo sOH + H3AsO4 = Hfo sAsO4-2 + H2O + 2H+
       log k -4.7
Hfo wOH + H3AsO4 = Hfo wAsO4-2 + H2O + 2H+
       log k -4.7
Hfo sOH + H3AsO4 = Hfo sOHAsO4-3 + 3H+
       log k -10.15
Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3H+
       log k -10.15
```


Surface Complexation in PHREEQC

- Complexation Model:
 - No electrostatic:
 - Dzombak and Morel Model:
 - CD Music: Charge distribution model
- Surface Area
- Site density

Why database modification?

- Surface of magnetite different than Hfo: site density, specific surface area
- Adsorption and reaction kinetics is different: having different Log K value
- Surface complex may be different
- Approximation of Hfo to magnetite leads to wrong modelling results

Modification Framework

• Getting log K value for the reaction : Log K calculated from the Langmuir K by using;

$$K = K_L * C_w$$
 $C_w = 5.56 * 10^4$

Table 1. Fitted Langmuir Isotherm Parameters and Thermodynamic Calcui

		Langmuir parameters			
arsenic species	temperature (K)	$q_{\text{max}} \text{ (mmol g}^{-1}\text{)}$	$K_{\rm L}$ (L mmol ⁻¹)	R^2	
	283	0.195	15.5	0.979	
A a (X7)	298	0.214	27.8	0.995	
As(V)	313	0.225	32.8	0.996	
	328	0.246	36.1	0.995	
	283	0.212	6.59	0.971	
As(III)	298	0.222	9.00	0.980	
	313	0.227	11.4	0.989	

Liu et al., 2015

As (V): Log K = 6.19

As(III): Log K=5.70

Modification Framework

Modification Framework

Optimization of CD-music model Parameter for Magnetite:

	Surface sps	=FeOH site no	ΔΖ0	ΔZ1	Log K	R2
Arenite						
Arsenate						

Developed data base

```
SURFACE MASTER SPECIES
Mag uni Mag uniOH-0.5 # =FeO site on Magnetite
Mag tri Mag tri0-0.5 # =Fe30 site on Magnetite
SURFACE SPECIES
# Magnetite
Mag tri0-0.5 = Mag tri0-0.5
-cd music 0 0 0 0 0
log k 0
Mag tri0-0.5 + H+ = Mag tri0H+0.5
-cd music 1 0 0 0 0
log k 9.20
Mag uniOH-0.5 = Mag uniOH-0.5
-cd music 0 0 0 0 0
log k 8.76
# H3As03
Mag uniOH-0.5 + H3AsO3 = Mag uniOAs(OH)2-0.5 + H2O
log k 5.69 # Stachowicz et al 2006
-cd music 0.16 -0.16 0 0 0
2Mag uniOH-0.5 + H3AsO3 = (Mag uniO)2AsOH- + 2H2O
log k 5.69 # Stachowicz et al 2006
-cd music 0.34 -0.34 0 0 0
# As04-3
Mag uniOH-0.5 + 2H+ + AsO4-3 = Mag uniOAsO2OH-1.5 + H2O
log k 6.19
-cd music 0.30 -1.30 0 0 0
2Mag uniOH-0.5 + 2H+ + AsO4-3 = (Mag uniO)2AsO2-2 + 2H2O
log k 6.19
-cd music 0.47 -1.47 0 0 0
```

```
TOR K
               11.12
   Arsenate
       Mag wOH + AsO4-3 + 3H+ = Mag wH2AsO4 + H2O
       log k 6.19
       Mag wOH + AsO4-3 + 2H+ = Mag wHAsO4- + H2O
       log k 6.19
       Mag wOH + AsO4-3 = Mag wOHAsO4-3
       log k 6.19
#
#
   Anions from table 10.7
   Arsenite
       Mag wOH + H3AsO3 = Mag wH2AsO3 + H2O
       log k 5.70
```

Model Run

temp 25 pH 7 pe 4 redox pe units mmol/l

SOLUTION 1

As(5) 0.5 Cl 100

density

Na 100

Output

						Mag_s 3.200e+00 moles				
Mag_s	6							Mole		Log
_	2.975e-04	moles				Species	Moles	Fraction	Molality	Molality
			Mole		Log					
	Species	Moles	Fraction	Molality	Molality	Mag_sOH	2.456e+00	0.768	2.456e+00	0.390
	V.5.111					Mag_sOH2+	3.719e-01	0.116	3.719e-01	-0.430
	Mag sOH	2.089e-04	0.702	2.089e-04	-3.680	Mag_s0-	3.716e-01	0.116	3.716e-01	-0.430
				7.534e-05		Mag_sOHAsO4-3	2.513e-04	0.000	2.513e-04	-3.600
	Mag_sOH2+	7.534e-05	0.253		-4.123	Mag_sHAsO4-	1.295e-07	0.000	1.295e-07	-6.888
	Mag_sO-	1.328e-05	0.045	1.328e-05	-4.877	Mag_sH2AsO4	2.412e-12	0.000	2.412e-12	-11.618
						Mag_sH2AsO3	2.730e-31	0.000	2.730e-31	-30.564
Mag_w	,									
-	2.975e-04	moles								
			Mole		Log	Mag_w				
	Species	Moles	Fraction	Molality	Molality	3.200e+00 moles				
	ap-care							Mole		Log
	Mag until	1.843e-04	0.620	1.843e-04	-3.734	Species	Moles	Fraction	Molality	Molality
	Mag_wOH	1921 (1920) Access (1930)								
	Mag_wOH2+	6.647e-05	0.223	6.647e-05	-4.177	Mag_wOH	2.456e+00	0.768	2.456e+00	0.390
	Mag_wOHAs04-3	3.503e-05	0.118	3.503e-05	-4.456	Mag_wOH2+	3.719e-01	0.116		-0.430
	Mag_wO-	1.171e-05	0.039	1.171e-05	-4.931	Mag_wO-	3.716e-01	0.116	3.716e-01	-0.430
	Mag wH2As03	4.363e-14	0.000	4.363e-14	-13.360	Mag_wOHAsO4-3	2.513e-04	0.000	2.513e-04	-3.600
	Mag_wHAs04-	1.202e-20	0.000	1.202e-20	-19.920	Mag_wHAsO4-	1.295e-07	0.000	1.295e-07	-6.888
	Mag_wH2AsO4	2.223e-28	0.000	2.223e-28	-27.653	Mag_wH2AsO4	2.412e-12	0.000	2.412e-12	-11.618
	III.	2.2236-20	0.000	2.2236-20	27.000	Mag_wH2AsO3	2.730e-31	0.000	2.730e-31	-30.564

CD Music

Importance of Surface complexation modelling

- Nano magnetite used for water filtration treatment unit
- Predicting adsorption in variable water quality
- Injecting nano-iron for in-situ stabilization of contaminant
- Sorption-desorption on adsorbent surfaces in the soil/aquifer matrix variable geochemical situation

Thank YOU!!!

Comments and Question!

-cu_music 0.40 -1.40 000

Arsenate

$$\equiv \text{FeOH}^{-1/2} + 2 \text{ H}^{+} + \text{AsO}_{4}^{-3} = \equiv \text{FeOAsO}_{3} \text{H}^{-3/2} + \text{H}_{2} \text{O}$$

$$2 \equiv \text{FeOH}^{-1/2} + 2 \text{ H}^{+} + \text{AsO}_{4}^{-3} = (\equiv \text{FeO})_{2} \text{AsO}_{2}^{-2} + 2 \text{ H}_{2} \text{O}$$

$$2 \equiv \text{FeOH}^{-1/2} + 3 \text{ H}^{+} + \text{AsO}_{4}^{-3} = (\equiv \text{FeO})_{2} \text{AsO}_{2} \text{H}^{-} + 2 \text{ H}_{2} \text{O}$$

1134-03

Arsenite

$$\equiv$$
FeOH^{-1/2} + H₃AsO₃ = \equiv FeOAs(OH)₂^{-1/2} + H₂O
2 \equiv FeOH^{-1/2} + H₃AsO₃ = (\equiv FeO)₂AsOH⁻ + 2 H₂O