Groundwater Quality in the Mazar-i-Sharif city, North Afghanistan

By: Devin Foster NDSU Geochemistry 2018

Location

• Mazar-I-Sharif city is in the Balkh province in northern Afghanistan

Background

- Main land use is agriculture
- All previous geologic and hydrogeology work has been lost in the prolonged wars
- First look into the chemistry of the water
- Mazar-i-sharif is situated in the Northern Afghanistan Basin (NAB)
- Two main water sources, shallow aquifer and the Nahri-Shahi stream

Regional Geology

• Mazar-i-sharif is situated in the Northern Afghanistan Basin (NAB)

Table 1 Geological units and their characteristics in the study area					
Geological unit	Characteristics	Age			
Q4a	Conglomerate and sandstone; alluvium, detrital sediments, gravel and sands	Holocene			
Q4sm	Mud, silt, clay, more abundant than sand; limestone, gypsum, and salt	Holocene			
Q34a	Conglomerate and sandstone; alluvium, detrital sediments, gravel and sands	Holocene—late Pleistocene			
Q3a	Conglomerate and sandstone; detrital sediments, gravel and sands	Late Pleistocene			
O2loe	Loess; loess content more than sand and clay	Middle Pleistocene			

Q2loe

Problems

- Water deficiency
- No prior work done in the area on water chemistry
- 27% of the measured values meet the WHO classification while the rest exceed their limits

Previous Work

Parameter	Min	Max	Mean	Guideline
				values WHO (2011)
				(2011)
pН	6.6	8.4	7.7	6.5-8.5
EC (µS/cm)	1003	6235	3495	1500
TDS (mg l^{-1})	667	4021	2310	1000
Ca^{2+} (mg l^{-1})	57	293	161	200
Mg^{2+} (mg l^{-1})	34	199	78	150
Na ⁺ (mg l ⁻¹)	71	1120	471	200
K ⁺ (mg l ⁻¹)	1.13	32	11	20
HCO ₃ ⁻ (mg l ⁻¹)	207	1493	479	240
Cl ⁻ (mg l ⁻¹)	119	1607	637	250
$SO_4^{-2} (mg l^{-1})$	119	1254	490	250
$NO_3^- (mg l^{-1})$	42	96	59	50
CO ₃ ²⁻	0	52	10	_
F−	0.009	0.063	0.026	1.5
TH	327	1719	724	_
SAR	1.3	19.1	7.6	_
%Na	26	81	55	_
RSC	-32.4	5.5	-6.46	_
PI	43	84	63.7	_
SI calcite	-1.08	1.51	0.35	_
SI dolomite	-0.73	2.95	0.85	_
SI gypsum	-3.52	-0.32	-1.17	_
SI anhydrate	-3.27	-0.51	-1.34	_

- Na+ primarily comes from cation exchange within minerals
- Mg2+ comes from ion exchange in minerals
- Ca2+ comes from calcium rich rock,
 Calcite, Dolomite, and Gypsum
- CO32- and HCO3- come from weathering of carbonates and dissolution of carbonic acid
- High values of SO42- in groundwater indicated that SO42- derived from chemical fertilizers

Focus for PHREEQC

- Attempt to limit two or more of the super saturated solvents to meet the WHO guidelines for a healthy drinking water.
- Which two solvents to remove
- Na+ and Cl-
- Removing one of the constituents at a time
- Using the Solution Master Species database

1st Simulation

```
SOLUTION 1
               25
    temp
    На
               7.7
    pe
    redox
               pe
    units
               mg/l
    density
    Ca
               161
    Cl
               637
    F
               0.026
   N(5)
               59
    K
               11
    Μq
               78
    S(6)
               490
    Na
               471
    C(4)
               10
    -water
               1 # kg
```

```
-----Saturation indices-----
 Phase
                 SI** log IAP log K(298 K, 1 atm)
 Anhydrite
              -1.18 -5.54 -4.36 CaSO4
 Aragonite
              -1.02 -9.32 -8.30 CaCO3
              -6.48 3.12 9.60 MgCO3:Mg(OH)2:3H2O
 Artinite
              -4.32 12.52 16.84 Mg (OH) 2
 Brucite
 Calcite
              -0.84
                     -9.32 -8.48 CaCO3
 CH4 (g)
             -74.48 -115.52 -41.05 CH4
              -3.78 -21.92 -18.15 CO2
 Dolomite(disordered) -2.18 -18.72 -16.54 CaMg(CO3)2
 Dolomite(ordered) -1.63 -18.72 -17.09 CaMg(CO3)2
 Epsomite
         -3.49 -5.62 -2.13 MgSO4:7H2O
             -4.32 -14.82 -10.50 CaF2
 Fluorite
              -0.93 -5.54 -4.61 CaSO4:2H2O
 Gypsum
 Halite
              -5.20 -3.60 1.60 NaCl
              -7.56 -37.53 -29.97 CaMg3(CO3)4
 Huntite
 Hydromagnesite -16.32 -25.08 -8.77 Mg5(CO3)4(OH)2:4H2O
                    12.60 32.70 CaO
             -20.10
              -1.94 -9.40 -7.46 MgCO3
Magnesite
Mg (OH) 2 (active) -6.27 12.52 18.79 Mg (OH) 2
MaF2
             -6.77 -14.90 -8.13 MgF2
Mirabilite
              -5.17
                     -6.29 -1.11 Na2SO4:10H2O
              -8.76 -10.07 -1.31 Na2CO3:10H2O
 Natron
 Nesquehonite
             -4.73 -9.40 -4.67 MgCO3:3H2O
 02 (q)
             -36.29 46.80 83.09 02
 Periclase
              -9.06 12.52 21.58 MgO
 Portlandite
             -10.20
                     12.60 22.80 Ca(OH)2
 Thenardite
              -6.60
                     -6.28 0.32 Na2SO4
 Thermonatrite -10.71
                      -10.07
                            0.64 Na2CO3:H2O
```

2nd Simulation

SOLUTION 1	
temp	25
pН	7.7
pe	4
redox	pe
units	mg/l
density	1
Ca	161
Cl	110000
F	0.026
N(5)	59
K	11
Mg	78
S(6)	490
Na	80000
C(4)	10
-water	1 # kg

```
-----Saturation indices-----
Phase
                 SI** log IAP log K(298 K, 1 atm)
Anhydrite
              -1.45 -5.81 -4.36 CaSO4
              -0.62 -8.92 -8.30 CaCO3
Aragonite
Artinite
              -4.46 5.14 9.60 MgCO3:Mg(OH)2:3H2O
                    13.93 16.84 Mg (OH) 2
              -2.92
Brucite
             -0.44
                    -8.92 -8.48 CaCO3
Calcite
CH4 (q)
             -75.01 -116.06 -41.05 CH4
              -4.44
                    -22.59 -18.15 CO2
Dolomite(disordered) -0.98 -17.52 -16.54 CaMg(CO3)2
Dolomite(ordered) -0.43 -17.52 -17.09 CaMg(CO3)2
             -3.81 -5.94 -2.13 MgSO4:7H2O
Epsomite
Fluorite
             -5.09 -15.59 -10.50 CaF2
Gypsum
              -1.33 -5.94 -4.61 CaSO4:2H2O
Halite
              0.18 1.78 1.60 NaCl
              -4.75 -34.71 -29.97 CaMg3(CO3)4
Hydromagnesite -11.95 -20.72 -8.77 Mg5(CO3)4(OH)2:4H2O
Lime
             -19.04 13.66 32.70 CaO
Magnesite
              -1.14 -8.60 -7.46 MgCO3
Mg (OH) 2 (active) -4.87 13.93 18.79 Mg (OH) 2
              -7.13 -15.26 -8.13 MgF2
MgF2
Mirabilite
              -1.84 -2.96 -1.11 Na2SO4:10H2O
             -4.76 -6.07 -1.31 Na2CO3:10H2O
Natron
Nesquehonite
            -4.12 -8.79 -4.67 MgCO3:3H2O
             -36.42 46.67
                             83.09 02
02 (g)
             -7.59 13.99 21.58 MgO
Periclase
Portlandite
              -9.20 13.60 22.80 Ca(OH)2
Thenardite
              -2.63
                      -2.31
                              0.32 Na2SO4
Thermonatrite
              -6.12
                      -5.49
                              0.64 Na2CO3:H2O
```

Discussion

- To make the Na+ and Cl- at or below values set by the WHO the amount of Na+ and Cl- needed is extreme and further complicates the water quality.
- How to lower concentrations?
- What inputs meet this requirements?

References

- Mahaqi, Ali, et al. "Hydrogeochemical Characteristics and Groundwater Quality Assessment for Drinking and Irrigation Purposes in the Mazar-i-Sharif City, North Afghanistan." Applied Water Science, 6 Aug. 2018.
- Google Earth

Questions?

