WATER CHEMISTRY ASSOCIATED WITH THE MARCELLUS SHALE

NDSU Geochemistry Fall 2012

By: Girish Uprety

OUTLINE

- Introduction
 - Location
 - Horizontal Drilling and Fracking
- Analysis
 - TDS
- Results And Discussion
- Modeling- PHREEQC-i
- Conclusion

LOCATION

Major Natural Gas Shale Basins of the United States

- Expands along NE part of US
- Covers parts of OH, PA, NY & WV
- Extraction in full swing in PA
- •Will look at Green Co. & Bradford Co

HORIZONTAL DRILLING AND HYDRAULIC FRACKING

ANALYSIS

- Total Dissolved solids (TDS)
 - Exceeding 200,000 mg/L
 - EPA level 500 mg/L or less
- Samples were collected in different stages.
 - Start of the pumping
 - Prior to recycle or disposal
- High concentration of various element
 - Strontium (Sr), Bromide (Br-), Calcium (Ca),
 Barium(Ba), and Chloride (Cl)
- Most likely from interaction with the formation water or salt

RESULTS AND DISUSSION

- These water share same characteristics like high TDS
- Predominance of Na and Cl in the dissolved load
- High concentration of Ba and Sr (Up tp 12,000 and 5200 mg/L)
- High concentration of Ba/Sr ratio
 - This due to Ba and SR rich minerals
 - Dissolution of Witherite (BaCO3), Celestite (SrSO4) and Strontianite (SrCO3)

MODELING- PHREEQC-I

- Doesn't do any modelling
- I picked three different samples
 - Two from Bradford County
 - Produced water (BR-A1)
 - Recycled-produced water (BR-A3)
 - One from Greene County
 - Fracking water (GR-AF)

Environmental Science & Technology

Article

Table 1. Major Element and Strontium Isotope Data for Marcellus Produced Water Samples

mg/L											
sample/ location	description	Na	Ca	Mg	Fe	Sr	Ba	Cl	TDS g/L	⁸⁷ Sr/ ⁸⁶ Sr ^a	$arepsilon_{ ext{Sr}}^{ ext{SW}b}$
Bradford Co., PA											
BR-A1	produced water	30,400	6,120	538	117	1,970	5,490	77,000	109.5	0.710653 ± 07	20.93 ± 0.10
BR-A2	produced water	49,400	20,800	1,750	123	5,230	12,000	159,000	211.4	0.710270 ± 10	15.53 ± 0.14
BR-A3	recycled prod. water	41,900	11,300	1,110	73.7	3,340	7,820	68,000	154.1	0.710742 ± 06	22.18 ± 0.08
Greene Co., PA											
GR-AF	frac water	20,923	4,377	567	16.0	1,389	393	41,900	88.7	0.710084 ± 08	12.90 ± 0.11

CONCLUSION

- Result
 - Fe(OH)3 (a) and Goethite were super saturated
 - Hematite was highly super saturated
 - Halite and gases under saturated
- There were slight variation in values but uniform throughout all 3 samples
- Similar results with temperature at 28 C

Chart- I At 25 C and 28 C

Standard temperature

At 28

Produced water (Bradford Co. PA):

Phase		SI 1	og IAP	log KT					
					Phase	SI	log IAP	log KT	
Fe (OH) 3 (a)	3.47	8.36	4.89	Fe (OH) 3			_		
Goethite	9.39	8.39	-1.00	FeOOH	Fe (OH) 3 (a)	3.53	8.42	4.89	Fe (OH) 3
H2(g)	-22.00	-25.15	-3.15	H2	Goethite	9.56	8.45	-1.11	FeOOH
H2O(g)	-1.54	-0.03	1.51	H20	H2 (g)	-22.00	-25.16	-3.16	H2
Halite	-1.33	0.25	1.58	NaCl	H2O(g)	-1.47	-0.03	1.43	H20
Hematite	20.82	16.81	-4.01	Fe203	Halite	-1.34	0.25	1.59	NaCl
02 (g)	-39.25	-42.15	-2.89	02	Hematite	21.17	16.93	-4.23	Fe203
					02 (g)	-38.25	-41.16	-2.91	02

Produced-Recycled water (Bradford Co. PA:

Phase		SI	log IAP	log KT	Phase	SI	log IAP	log KT	
Fe(OH)3(a) Goethite	3.27			Fe (OH) 3 FeOOH	Fe(OH)3(a) Goethite	3.33 9.36	8.22		Fe (OH) 3 FeOOH
H2 (g)			-3.15		H2 (g)	-22.00	-25.16	-3.16	H2
H2O(g)	-1.55	-0.04	1.51	H20	H2O(g)	-1.47	-0.04	1.43	H20
Halite	-1.20	0.38	1.58	NaCl	Halite	-1.21	0.38	1.59	NaCl
Hematite	20.44	16.43	-4.01	Fe203	Hematite	20.78	16.55	-4.23	Fe203
02 (g)		-39.26	-42.15	-2.89 02	02 (g)	-38.26	-41.17	-2.91	02

Frac Water (Greene Co. PA):

Phase	SI	log IAP	log KT		Phase	SI	log IAP	log KT	
Fe (OH) 3 (a) Goethite H2 (g) H2O (g) Halite Hematite O2 (g)	-1.53 -1.85 19.21	7.59 -25.15 -0.02 -0.27 15.21	-1.00 -3.15 1.51 1.58	H2 H2O NaC1 Fe2O3	Fe (OH) 3 (a) Goethite H2 (g) H2O (g) Halite Hematite O2 (g)	-22.00 -1.45 -1.86 19.54	7.63 7.65 -25.16 -0.02 -0.27 15.31 -41.13	-1.11 -3.16 1.43 1.59 -4.23	H20 NaC1 Fe2O3

FUTURE

- Lot of room to analyze in future
- Drilling fluids (unknown)
 - Intelligence Property (IP)
- Interaction of the chemicals with shale formation.

REFERENCE: Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction By: Elizabeth C. Chapman, Rosemary C. Capo, Brian W. Stewart, Carl S. Kirby, Richard W. Hammack, Karl T. Schroeder, and Harry M. Edenborn

QUESTIONS

