WATER CHEMISTRY ASSOCIATED WITH THE MARCELLUS SHALE NDSU Geochemistry Fall 2012 By: Girish Uprety ## OUTLINE - Introduction - Location - Horizontal Drilling and Fracking - Analysis - TDS - Results And Discussion - Modeling- PHREEQC-i - Conclusion ## LOCATION #### Major Natural Gas Shale Basins of the United States - Expands along NE part of US - Covers parts of OH, PA, NY & WV - Extraction in full swing in PA - •Will look at Green Co. & Bradford Co # HORIZONTAL DRILLING AND HYDRAULIC FRACKING ## ANALYSIS - Total Dissolved solids (TDS) - Exceeding 200,000 mg/L - EPA level 500 mg/L or less - Samples were collected in different stages. - Start of the pumping - Prior to recycle or disposal - High concentration of various element - Strontium (Sr), Bromide (Br-), Calcium (Ca), Barium(Ba), and Chloride (Cl) - Most likely from interaction with the formation water or salt ### RESULTS AND DISUSSION - These water share same characteristics like high TDS - Predominance of Na and Cl in the dissolved load - High concentration of Ba and Sr (Up tp 12,000 and 5200 mg/L) - High concentration of Ba/Sr ratio - This due to Ba and SR rich minerals - Dissolution of Witherite (BaCO3), Celestite (SrSO4) and Strontianite (SrCO3) ## MODELING- PHREEQC-I - Doesn't do any modelling - I picked three different samples - Two from Bradford County - Produced water (BR-A1) - Recycled-produced water (BR-A3) - One from Greene County - Fracking water (GR-AF) **Environmental Science & Technology** Article Table 1. Major Element and Strontium Isotope Data for Marcellus Produced Water Samples | mg/L | | | | | | | | | | | | |---------------------|----------------------|--------|--------|-------|------|-------|--------|---------|------------|---|------------------------------------| | sample/
location | description | Na | Ca | Mg | Fe | Sr | Ba | Cl | TDS
g/L | ⁸⁷ Sr/ ⁸⁶ Sr ^a | $arepsilon_{ ext{Sr}}^{ ext{SW}b}$ | | Bradford Co., PA | | | | | | | | | | | | | BR-A1 | produced water | 30,400 | 6,120 | 538 | 117 | 1,970 | 5,490 | 77,000 | 109.5 | 0.710653 ± 07 | 20.93 ± 0.10 | | BR-A2 | produced water | 49,400 | 20,800 | 1,750 | 123 | 5,230 | 12,000 | 159,000 | 211.4 | 0.710270 ± 10 | 15.53 ± 0.14 | | BR-A3 | recycled prod. water | 41,900 | 11,300 | 1,110 | 73.7 | 3,340 | 7,820 | 68,000 | 154.1 | 0.710742 ± 06 | 22.18 ± 0.08 | | Greene Co., PA | | | | | | | | | | | | | GR-AF | frac water | 20,923 | 4,377 | 567 | 16.0 | 1,389 | 393 | 41,900 | 88.7 | 0.710084 ± 08 | 12.90 ± 0.11 | ## CONCLUSION - Result - Fe(OH)3 (a) and Goethite were super saturated - Hematite was highly super saturated - Halite and gases under saturated - There were slight variation in values but uniform throughout all 3 samples - Similar results with temperature at 28 C #### Chart- I At 25 C and 28 C Standard temperature At 28 #### Produced water (Bradford Co. PA): | Phase | | SI 1 | og IAP | log KT | | | | | | |---------------|--------|--------|--------|-----------|---------------|--------|---------|--------|-----------| | | | | | | Phase | SI | log IAP | log KT | | | Fe (OH) 3 (a) | 3.47 | 8.36 | 4.89 | Fe (OH) 3 | | | _ | | | | Goethite | 9.39 | 8.39 | -1.00 | FeOOH | Fe (OH) 3 (a) | 3.53 | 8.42 | 4.89 | Fe (OH) 3 | | H2(g) | -22.00 | -25.15 | -3.15 | H2 | Goethite | 9.56 | 8.45 | -1.11 | FeOOH | | H2O(g) | -1.54 | -0.03 | 1.51 | H20 | H2 (g) | -22.00 | -25.16 | -3.16 | H2 | | Halite | -1.33 | 0.25 | 1.58 | NaCl | H2O(g) | -1.47 | -0.03 | 1.43 | H20 | | Hematite | 20.82 | 16.81 | -4.01 | Fe203 | Halite | -1.34 | 0.25 | 1.59 | NaCl | | 02 (g) | -39.25 | -42.15 | -2.89 | 02 | Hematite | 21.17 | 16.93 | -4.23 | Fe203 | | | | | | | 02 (g) | -38.25 | -41.16 | -2.91 | 02 | #### Produced-Recycled water (Bradford Co. PA: | Phase | | SI | log IAP | log KT | Phase | SI | log IAP | log KT | | |------------------------|-------|--------|---------|--------------------|------------------------|--------------|---------|--------|--------------------| | Fe(OH)3(a)
Goethite | 3.27 | | | Fe (OH) 3
FeOOH | Fe(OH)3(a)
Goethite | 3.33
9.36 | 8.22 | | Fe (OH) 3
FeOOH | | H2 (g) | | | -3.15 | | H2 (g) | -22.00 | -25.16 | -3.16 | H2 | | H2O(g) | -1.55 | -0.04 | 1.51 | H20 | H2O(g) | -1.47 | -0.04 | 1.43 | H20 | | Halite | -1.20 | 0.38 | 1.58 | NaCl | Halite | -1.21 | 0.38 | 1.59 | NaCl | | Hematite | 20.44 | 16.43 | -4.01 | Fe203 | Hematite | 20.78 | 16.55 | -4.23 | Fe203 | | 02 (g) | | -39.26 | -42.15 | -2.89 02 | 02 (g) | -38.26 | -41.17 | -2.91 | 02 | #### Frac Water (Greene Co. PA): | Phase | SI | log IAP | log KT | | Phase | SI | log IAP | log KT | | |--|-------------------------|---|--------------------------------|----------------------------|--|-----------------------------------|---|---|----------------------| | Fe (OH) 3 (a)
Goethite
H2 (g)
H2O (g)
Halite
Hematite
O2 (g) | -1.53
-1.85
19.21 | 7.59
-25.15
-0.02
-0.27
15.21 | -1.00
-3.15
1.51
1.58 | H2
H2O
NaC1
Fe2O3 | Fe (OH) 3 (a)
Goethite
H2 (g)
H2O (g)
Halite
Hematite
O2 (g) | -22.00
-1.45
-1.86
19.54 | 7.63
7.65
-25.16
-0.02
-0.27
15.31
-41.13 | -1.11
-3.16
1.43
1.59
-4.23 | H20
NaC1
Fe2O3 | ### FUTURE - Lot of room to analyze in future - Drilling fluids (unknown) - Intelligence Property (IP) - Interaction of the chemicals with shale formation. REFERENCE: Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction By: Elizabeth C. Chapman, Rosemary C. Capo, Brian W. Stewart, Carl S. Kirby, Richard W. Hammack, Karl T. Schroeder, and Harry M. Edenborn # QUESTIONS