Evaluation of a High Fluoride Contaminated Fractured Rock Aquifer in South Africa: An Evaporation Case Study

Paper by Elumalai et al.

Presented by Matthew Hughes

GEOL 628 5/8/2025

Background

- Groundwater is an important resource for arid communities, 44% of sub-Saharan Africa has limited access to clean water
- A combination of natural and anthropogenic factors determine groundwater quality
- Geologic Processes: rock-water interaction, weathering, precipitation/dissolution and <u>evaporation</u>
- Fluoride is beneficial below 1.5 ppm, above is harmful to health causing hypothyroidism, fluorosis and more

Background

- Several provinces of South Africa have over 4ppm F in water
- Common geologic sources of F include volcanic, gneissic, and granitic minerals, and rocks; fluorite, fluorapatite, hydroxyapatite, cryolite, and hornblende

(IGRAC 2009)

Study Objectives

- Identify the geological mechanisms that lead to high F concentration in Kwazulu-Natal region
- Perform chemometric modeling to show the possibility of high F concentrations
- Spread awareness, get aid for Kwazulu-Natal

from **\$125**Hluhluwe-Imfolozi Park Big 5
Family Safari Experience
getyourguide.com
7hr • Desert Safaris

from \$161

1/2 Day Tala Game Reserve & Natal Lion Park From Durban getyourguide.com

6hr • Wheelchair Accessible

from **\$215**Durban: Full-Day Big 5 Safari
@ Manyoni Private Game...
getyourguide.com
14hr • Photography Tours

from **\$256**Full Day Kwazulu Hluhluwe Imfolozi And Isimangaliso...
viator.com
14hr • Day Trips

Study area

Fig. 1. Sampling wells as cluster groups, geology and other features of the Study area.

Method overview

- Groundwater samples taken from 49 Bore Holes in Northern Kwazı Natal
- Electrical conductivity (EC) and pH were measured in field with meters
- Ion chromatography for major and minor Ion analyses
- Titration for bicarbonate and carbonate evaluation
- Various software for interpretation/chemometric modeling
- ArcGIS for mapping
- PHREEQC for Saturation indices

Concentration Data

Table 1
Statistical summary of physiochemical parameters.

n = 49	Min	Max	Average	STD	WHO (2011)			
					HDL	MAL	No. of samples (%) exceeded HDL	No. of samples (%) exceeded MAL
pН	7.0	8.6	7.6	0.4	6.5-9.2	_	_	_
EC	333	7977	2152	1883	_	_	_	_
TDS	213	5105	1378	1205	500	1500	39(80%)	13(27%)
TH	55	2041	361	352	100	500	44(90%)	11(22%)
Na	37	1504	333	312	_	200	_	30(61%)
K	1	14	4	2.9	_	12	_	1(2%)
Ca	16	586	97	101	75	200	17(35%)	5(10%)
Mg	4	140	29	25.3	50	150	6(12%)	
Cl	55	2750	618	652	200	600	37(76%)	16(33%)
HCO ₃	43	589	227	104	_	_	_	_
SO_4	3	657	73	113	200	400	3(6%)	2(4%)
NO_3	BDL	91	5.1	16.0	45	_	2(4%)	
Si	1.0	58	33.4	16.6	_	_	_	_
F	0.1	12	2.8	3.0	_	1.5	_	25(51%)
NH_4	BDL	1	0.1	0.2	_	_	_	_ ` ` `
PO_4	BDL	1	0.4	0.2	_	_	_	_

HDL = Highest desirable limit; MAL = Maximum allowable limit.

Study Conclusions Overview

- High concentrations of fluoride associated with NaCl water.
- Mineral weathering, evaporation and wastewater infiltration control the water chemistry
- Calcite precipitation and groundwater fluoride concentrations control fluorite solubility
- Statistical analyses show that mineral weathering, evaporation, longer residence time, wastewater, nitrification, and ion exchange influenced the water chemistry
- Geochemical and chemometric methods showed that fluoride concentrations are driven by evaporation

Fig. 2. Modified Chadha diagram explains water types and fluoride concentration and Gibbs plots explain dominance processes.

Evaporation Bootcamp: Faure 18.3

- When water evaporates the minerals that stay behind become more concentrated
- If two elements ex; X and Y don't react or form solids their concentrations increase together in a linear relationship

m = (Y)/(X)

- If X or Y precipitates the other element will continue to rise in concentration
- If both X and Y precipitate in a fixed ratio their concentrations decrease

 $(X)_f = g(X)_i$

 This process acts as a geochemical divide and influences changes in water chemistry due to evaporation

10.0 -CO}-9.0 -8.0 1 X 10⁻² HCO₃ SiO, Amorph. SiO₂ Molar Concentration ,Calcite Sepiolite X 10-4 .Ca2+ Mg2+ 1 X 10-9 30 100 10 1000 Concentration Factor

Faure Fig 20.4

Figure 20.4 Evolution of spring water from the Sierra Nevada Mountains, California, as a result of evaporative concentration and the precipitation of calcite, sepiolite, and amorphous silica. Note that calcite precipitation caused by continuing loss of water depletes the water in Ca^{2+} but enriches it in carbonate ions because the mole ratio $Ca^{2+}/(CO_3^{2-} + HCO_3^{-})$ of the spring water is less than one. Similarly, the water is depleted in Mg^{2+} but enriched in SiO_2 by sepiolite precipitation because the Mg^{2+}/SiO_2 ratio is less than one. The concentration of SiO_2 in the brine is ultimately held constant by the precipitation of solid amorphous SiO_2 . The result of a 1000-fold increase in the concentration of dissolved species caused by loss of water is a Na + K + carbonate + sulfate + chloride brine (adapted from Garrels and Mackenzie, 1967).

My Evaporation Analyses Objectives

- Use PHREEQC to see how evaporation changes concentrations and SI's in Kwazulu-Natal water
- See what happens to concentration and SI data if the temperature is increased to the maximum temp recorded in the study, 30 °C

PHREEQC input


```
SOLUTION 1
               25
    temp
    pН
               7.6
    pe
    redox
               pe
    units
               mmol/kgw
    density
    Alkalinity 227
               97
    Ca
               618
               2.8
    Mg
               29
    N(-3)
               0.1
               5.1
    N(5)
    Na
               333
               0.4
    S(6)
               73
    Si
               33.4
               1 # kg
    -water
REACTION 1
    H20
                -1
    52.73 moles
SAVE solution 2
END
MIX 1
         20
SAVE solution 3
END
```

25°C PHREEQC Output: Solution Composition

Before Evaporation

Elements	Molality	Moles
Alkalinity Ca Cl F K Mg N(-3) N(5) Na	2.270e-01 9.700e-02 6.180e-01 2.800e-03 4.000e-03 2.900e-02 1.000e-04 5.100e-03 3.330e-01 4.000e-04	2.270e-01 9.700e-02 6.180e-01 2.800e-03 4.000e-03 2.900e-02 1.000e-04 5.100e-03 3.330e-01 4.000e-04
S(6) Si	7.300e-02 3.340e-02	7.300e-02 3.340e-02

Elements	Molality	Moles
C Ca C1 F K Mg	4.509e+00 1.942e+00 1.237e+01 5.605e-02 8.008e-02 5.806e-01 1.041e-01	2.252e-01 9.700e-02 6.180e-01 2.800e-03 4.000e-03 2.900e-02 5.200e-03
Na P S Si	6.666e+00 8.008e-03 1.461e+00 6.686e-01	3.330e-01 4.000e-04 7.300e-02 3.340e-02

25°C PHREEQC Output: F speciation

Before Evaporation

F		2.800e-03					
	F-	2.127e-03	1.267e-03	-2.672	-2.897	-0.225	-0.50
	MgF+	5.453e-04	3.469e-04	-3.263	-3.460	-0.196	-10.24
	NaF	1.277e-04	1.536e-04	-3.894	-3.814	0.080	7.26
	HF	3.971e-08	4.774e-08	-7.401	-7.321	0.080	12.50
	HF2-	3.049e-10	2.321e-10	-9.516	-9.634	-0.118	22.87
	SiF6-2	5.954e-19	1.086e-19	-18.225	-18.964	-0.739	45.83

F		5.605e-02					
	MgF+	2.599e-02	1.337e-02	-1.585	-1.874	-0.289	-10.07
	F-	2.163e-02	9.562e-03	-1.665	-2.019	-0.355	1.87
	NaF	8.430e-03	1.331e-01	-2.074	-0.876	1.198	7.26
	HF	6.249e-08	9.865e-07	-7.204	-6.006	1.198	12.50
	SiF6-2	2.495e-08	2.191e-09	-7.603	-8.659	-1.056	55.52
	HF2-	1.321e-09	3.619e-08	-8.879	-7.441	1.438	25.30

25°C PHREEQC Output: Saturation Indices

Before Evaporation

Phase	SI**	log IAP	log K(298 K, 1 atm)
Anhydrite	0.21	-4.07	-4.28	CaSO4
Aragonite	2.90	-5.43	-8.34	CaCO3
Arcanite	-5.71	-7.59	-1.88	K2S04
Calcite	3.05	-5.43	-8.48	CaCO3
Chalcedony	2.17	-1.38	-3.55	SiO2
Chrysotile	3.44	35.64	32.20	Mg3Si2O5(OH)4
CO2 (g)	-0.70	-2.17	-1.47	CO2
Dolomite	5.61	-11.47	-17.08	CaMg (CO3) 2
Epsomite	-3.01	-4.75	-1.74	MgSO4:7H2O
Fluorite	3.03	-7.57	-10.60	CaF2
Gypsum	0.49	-4.09	-4.58	CaSO4:2H2O
H2 (g)	-23.25	-26.35	-3.10	H2
H2O(g)	-1.51	-0.01	1.50	H2O
Halite	-2.66	-1.09	1.57	NaCl
Hexahydrite	-3.17	-4.74	-1.57	MgSO4:6H2O
Hydroxyapatite	10.91	7.48	-3.42	Ca5 (PO4) 30H
Kieserite	-3.53	-4.69	-1.16	MgSO4:H2O
Mirabilite	-2.51	-3.75	-1.24	Na2SO4:10H2O
NH3 (g)	-7.73	-5.94	1.80	NH3
O2 (g)	-36.81	-39.70	-2.89	02
Quartz	2.60	-1.38	-3.98	SiO2
Sepiolite	5.68	21.44	15.76	Mg2Si3O7.5OH:3H2O
Sepiolite(d)	2.78	21.44	18.66	Mg2Si3O7.5OH:3H2O
SiO2(a)	1.33	-1.38	-2.71	SiO2
Sylvite	-3.96	-3.06	0.90	KC1
Talc	11.49	32.89	21.40	Mg3Si4Ol0(OH)2
Thenardite	-3.35	-3.65	-0.30	Na2SO4

25°C PHREEQC Output: Saturation Indices

Phase	SI**	log IAP	log K(298 K, l atm)
Anhydrite	1.01	-3.26	-4.28	CaSO4
Aragonite	4.63	-3.70	-8.34	CaCO3
Arcanite	-3.55	-5.43	-1.88	K2SO4
Calcite	4.78	-3.70	-8.48	CaCO3
CH4 (g)	-127.26	-130.06	-2.80	CH4
Chalcedony	5.01	1.46	-3.55	SiO2
Chrysotile	7.51	39.71	32.20	Mg3Si2O5(OH)4
CO2 (g)	0.92	-0.55	-1.47	CO2
Dolomite	8.57	-8.51	-17.08	CaMg (CO3) 2
Epsomite	-4.27	-6.00	-1.74	MgSO4:7H2O
Fluorite	5.99	-4.61	-10.60	CaF2
Gypsum	0.85	-3.73	-4.58	CaSO4:2H2O
H2 (g)	-38.64	-41.74	-3.10	H2
H2O(g)	-1.74	-0.23	1.50	H2O
H2S(g)	-128.87	-136.81	-7.94	H2S
Halite	0.77	2.34	1.57	NaCl
Hexahydrite	-4.20	-5.77	-1.57	MgSO4:6H2O
Hydroxyapatite	16.35	12.92	-3.42	Ca5 (PO4) 30H
Kieserite	-3.44	-4.60	-1.16	MgSO4:H2O
Mirabilite	-1.02	-2.26	-1.24	Na2SO4:10H2O
N2 (g)	1.58	-1.60	-3.18	N2
NH3 (g)	-54.19	-52.39	1.80	NH3
02 (g)	-6.47	-9.36	-2.89	02
Quartz	5.44	1.46	-3.98	SiO2
Sepiolite	12.64	28.40	15.76	Mg2Si3O7.5OH:3H2O
Sepiolite(d)	9.74	28.40	18.66	Mg2Si3O7.5OH:3H2O
SiO2(a)	4.17	1.46	-2.71	SiO2
Sulfur	-96.15	-91.27	4.88	S
Sylvite	-1.32	-0.42	0.90	KC1
Talc	21.46	42.86	21.40	Mg3Si4Ol0(OH)2
Thenardite	0.37	0.07	-0.30	Na2S04

Max Temp PHREEQC Output: Solution Composition

After Evaporation at 25 C =

After Evaporation at 30.3 C

C 4.509e+00 2.252e-01 Ca 1.942e+00 9.700e-02 Cl 1.237e+01 6.180e-01 F 5.605e-02 2.800e-03 K 8.008e-02 4.000e-03 Mg 5.806e-01 2.900e-02 N 1.041e-01 5.200e-03 Na 6.666e+00 3.330e-01 P 8.008e-03 4.000e-04 S 1.461e+00 7.300e-02	Elements	Molality	Moles
Si 6.686e-01 3.340e-02	Ca C1 F K Mg N Na P	1.942e+00 1.237e+01 5.605e-02 8.008e-02 5.806e-01 1.041e-01 6.666e+00 8.008e-03 1.461e+00	9.700e-02 6.180e-01 2.800e-03 4.000e-03 2.900e-02 5.200e-03 3.330e-01 4.000e-04 7.300e-02

Max Temp PHREEQC Output: F speciation

After Evaporation at 25°C

F		5.605e-02					
	MgF+	2.599e-02	1.337e-02	-1.585	-1.874	-0.289	-10.07
	F-	2.163e-02	9.562e-03	-1.665	-2.019	-0.355	1.87
	NaF	8.430e-03	1.331e-01	-2.074	-0.876	1.198	7.26
	HF	6.249e-08	9.865e-07	-7.204	-6.006	1.198	12.50
	SiF6-2	2.495e-08	2.191e-09	-7.603	-8.659	-1.056	55.52
	HF2-	1.321e-09	3.619e-08	-8.879	-7.441	1.438	25.30

After Evaporation at 30.3°C

F		5.605e-02						
	MgF+	2.722e-02	1.394e-02	-1.565	-1.856	-0.291	-10.07	
	F-	2.082e-02	9.150e-03	-1.682	-2.039	-0.357	2.06	
	NaF	8.014e-03	1.257e-01	-2.096	-0.901	1.196	7.45	
	HF	5.701e-08	8.945e-07	-7.244	-6.048	1.196	12.72	
	SiF6-2	6.369e-09	5.501e-10	-8.196	-9.260	-1.064	56.42	
	HF2-	1.165e-09	3.261e-08	-8.934	-7.487	1.447	25.66	

25°C PHREEQC Output: Saturation Indices

Phase	SI**	log IAP	log K(298 K, 1 atm)
Anhydrite	1.01	-3.26	-4.28	CaSO4
Aragonite	4.63	-3.70	-8.34	CaCO3
Arcanite	-3.55	-5.43	-1.88	K2S04
Calcite	4.78	-3.70	-8.48	CaCO3
CH4 (g)	-127.26	-130.06	-2.80	CH4
Chalcedony	5.01	1.46	-3.55	SiO2
Chrysotile	7.51	39.71	32.20	Mg3Si2O5(OH)4
CO2 (g)	0.92	-0.55	-1.47	CO2
Dolomite	8.57	-8.51	-17.08	CaMg (CO3) 2
Epsomite	-4.27	-6.00	-1.74	MgSO4:7H2O
Fluorite	5.99	-4.61	-10.60	CaF2
Gypsum	0.85	-3.73	-4.58	CaSO4:2H2O
H2 (g)	-38.64	-41.74	-3.10	H2
H2O(g)	-1.74	-0.23	1.50	H2O
	-128.87	-136.81	-7.94	H2S
Halite	0.77	2.34	1.57	NaCl
Hexahydrite				
Hydroxyapatite	16.35	12.92	-3.42	Ca5 (PO4) 30H
Kieserite	-3.44	-4.60	-1.16	MgSO4:H2O
Mirabilite	-1.02	-2.26	-1.24	Na2SO4:10H2O
N2 (g)	1.58	-1.60	-3.18	N2
NH3 (g)	-54.19	-52.39	1.80	NH3
02 (g)	-6.47	-9.36	-2.89	02
Quartz	5.44	1.46	-3.98	SiO2
Sepiolite	12.64	28.40	15.76	Mg2Si3O7.5OH:3H2O
Sepiolite(d)	9.74	28.40	18.66	Mg2Si3O7.5OH:3H2O
SiO2(a)	4.17	1.46	-2.71	SiO2
Sulfur	-96.15	-91.27	4.88	S
Sylvite	-1.32	-0.42	0.90	KC1
Talc	21.46	42.86	21.40	Mg3Si4Ol0(OH)2
Thenardite	0.37	0.07	-0.30	Na2S04

30.3°C PHREEQC Output: Saturation Indices

Phase	SI**	log IAP	log K(303 K, 1 atm)
Anhydrite	0.97	-3.37	-4.34	CaSO4
Aragonite	4.67	-3.70	-8.37	CaCO3
Arcanite	-3.65	-5.46	-1.81	K2S04
Calcite	4.82	-3.70	-8.52	CaCO3
CH4 (g)	-124.72	-127.57	-2.85	CH4
Chalcedony	4.94	1.45	-3.49	SiO2
Chrysotile	8.50	40.06	31.56	Mg3Si2O5(OH)4
CO2 (g)	0.88	-0.65	-1.53	CO2
Dolomite	8.77	-8.42	-17.18	CaMg (CO3) 2
Epsomite	-4.31	-6.02	-1.71	MgSO4:7H2O
Fluorite	5.80	-4.74	-10.54	CaF2
Gypsum	0.75	-3.84	-4.58	CaSO4:2H2O
H2 (g)	-37.83	-40.94	-3.11	H2
H2O(g)	-1.60	-0.23	1.37	H2O
H2S(g)	-126.49	-134.42	-7.93	H2S
Halite	0.75	2.33	1.57	NaCl
Hexahydrite	-4.22	-5.78	-1.56	MgSO4:6H2O
Hydroxyapatite	16.65	12.76	-3.88	Ca5 (PO4) 30H
Kieserite	-3.48	-4.62	-1.14	MgSO4:H2O
Mirabilite	-1.26	-2.28	-1.02	Na2SO4:10H2O
N2 (g)	1.61	-1.60	-3.21	N2
NH3 (g)	-53.08	-51.39	1.69	NH3
02 (g)	-6.36	-9.29	-2.93	02
Quartz	5.35	1.45	-3.90	SiO2
Sepiolite	12.99	28.61	15.62	Mg2Si3O7.5OH:3H2O
Sepiolite(d)	9.95	28.61	18.66	Mg2Si3O7.5OH:3H2O
SiO2(a)	4.11	1.45	-2.67	SiO2
Sulfur	-94.53	-89.77	4.76	S
Sylvite	-1.35	-0.43	0.93	KC1
Talc	22.38	43.18	20.81	Mg3Si4Ol0(OH)2
Thenardite	0.37	0.05	-0.33	Na2SO4

Summary of Results

- Evaporation increases the concentration of fluoride ions
- Evaporation changes the solubility indices of essentially all minerals
- Evaporation changes F speciation, making MgF⁺ the dominant F species
- 30° C evaporation creates equal concentration of fluoride, but different species distribution than 25°C
- Temperature changes the solubility indices of each mineral independently, no overarching trend, but higher temperature did make fluorite more soluble.

Key takeaways

Evaporation is a driving force in how geology impacts water quality

 As the effects of climate change continue to grow, the fluoride concentration/water quality of the groundwater will continue to

change

citations

- Vetrimurugan, E., Brindha, K., Lakshmanan, E., & Sithole, B. (2019). Evaluation of high fluoride contaminated fractured rock aquifer in South Africa Geochemical and chemometric approaches. *Environmental Science and Pollution Research*, 26(21), 21432–21450. https://doi.org/10.1007/s11356-019-05489-6
- Elumalai, V., Nwabisa, D. P., & Rajmohan, N. (2019). Evaluation of high fluoride contaminated fractured rock aquifer in South Africa – Geochemical and chemometric approaches. *Chemosphere*, 235, 1–11. https://doi.org/10.1016/j.chemosphere.2019.06.065
- Adelana, Michael & Fantong, Wilson & Nedaw, Dessie & Duah, Anthony. (2011). Groundwater and Health: Meeting Unmet Needs in Sub-Saharan Africa. 10.1007/978-90-481-3426-7_2.
- Guerra, R. (n.d.). How does water evaporate at night? Guide of Greece. https://guideofgreece.com
- Abbot, J., & Marohasy, J. (Eds.). (2025). Climate change: The facts 2025. Australian Scholarly Publishing.
- Faure, G. (1998). Principles and applications of geochemistry (2nd ed.). Prentice Hall.
- Office of Environmental Health Hazard Assessment. (2025). *Fluoride OEHHA*. State of California. https://oehha.ca.gov/chemicals/fluoride