

GROUNDWATER IN HARD-ROCK AQUIFERS IN SOUTH INDIA USING INVERSE MODELING.

NDSU GEOCHEMISTRY SPRING, 2025

Introduction.

- The study focuses on the water quality issues in Nalgonda district in India.
- Particularly fluoride contamination and salinity problems in this region's hardrock aquifers.
- This area is highly vulnerable to fluoride and salinity issues due to various geochemical processes.

Fluoride contamination and Salinity

- The dissolution of fluoride minerals like fluorite and apatite increases fluoride concentrations, particularly under high pH and temperature conditions.
- The weathering of minerals such as silicates, carbonates, and evaporites releases salts and other ions, further enhancing salinity.
- These geochemical processes, combined with human activities like irrigation and fertilizer use, make the groundwater highly vulnerable to fluoride and salinity contamination, impacting water quality and public health.

Introduction Cont.

Previous studies have identified factors influencing groundwater chemistry

Few have focused on quantitative modeling.

• This study adopts a quantitative approach using PHREEQC inverse modeling.

What is inverse modeling?

- Inverse modeling refers to a technique used to interpret and predict the geochemical processes that influence groundwater composition.
- It is employed to understand how the observed groundwater chemistry such as these ions relates to underlying geological processes, such as mineral dissolution, weathering, and water–rock interactions.
 - (e.g., concentrations of ions like Ca²⁺, Na⁺, F⁻, SO₄²⁻, etc.)

Study Area

- The study area is in Nalgonda district, Telangana, India.
- Region features:
 - Hard-rock terrain with dissected hills and valleys
 - Dendritic to sub dendritic drainage system formed by the River Musi
- The main soil types are red, black, alkaline, and alluvial.

Geology of the study area.

- Predominantly composed of hard-rock formations
- Three main hydrogeological units are identified:
 - **Weathered Zone (up to 30 m):** Overexploited and largely dried out; dug wells are mostly defunct.
 - Fractured Zone (30–196 m): Found in granite/gneiss bedrock with quartz veins.
 - Aquifuge (>200 m): Massive granite/gneiss bedrock with negligible porosity, making it mostly impermeable.

Sampling and Measurement

- 22 groundwater samples were collected from bore wells and tube wells of varying depths.
- To ensure representative sampling, wells were pumped for 10–15 minutes before collection.
- Samples were filtered, stored in acid-washed polyethylene bottles, and acidified to pH 2
 with ultrapure HNO₃ for cation and trace element analysis.
- Field measurements included pH, temperature, and electrical conductivity (EC), using a portable water quality kit.
- Alkalinity was measured by titration.
- Major ions were analyzed via ion chromatography, and trace elements (Si, Al) were measured using ICP-MS.
- Analytical accuracy was confirmed with ion balance errors within 10%.

Results from Source

Parameter	Group 1				Group 2				Group 3			
	Min	Max	Mean	SD	Min	Max	Mean	SD	Min	Max	Mean	SD
рН	7.2	7.7	7.4	0.2	7.0	8.3	7.5	0.5	7.3	7.4	7.4	0.1
EC	423.0	757.0	636.7	110.5	1305.0	1700.0	1556.8	149.4	2305.0	2562.0	2425.3	112.4
TA	69.0	98.0	82.6	8.9	38.0	71.0	55.3	9.6	65.0	69.0	67.0	1.8
Т	27.8	29.4	28.6	0.6	29.3	35.2	32.6	2.3	27.9	28.9	28.4	0.5
F-	0.7	1.1	0.9	0.1	0.0	3.1	1.4	0.8	2.2	2.9	2.5	0.3
CI-	66.0	120.0	96.4	20.7	178.0	279.0	220.5	30.0	317.0	383.0	348.0	33.4
NO ₃ -	13.0	28.0	17.4	5.9	48.0	69.0	58.1	6.9	72.0	86.0	78.8	6.8
SO ₄ ²⁻	50.0	69.0	62.0	6.5	78.0	82.0	79.4	1.1	84.0	96.0	88.0	5.7
Mg ²⁺	3.0	24.0	10.6	7.9	27.0	62.0	43.3	12.0	34.0	86.0	71.8	25.2
Ca ²⁺	53.0	76.0	66.4	8.1	30.0	93.0	66.2	20.8	74.0	86.0	78.0	5.5
Na ⁺	41.0	66.0	52.6	10.1	93.0	142.0	111.2	15.5	128.0	174.0	146.0	21.0
K ⁺	2.0	6.0	3.4	1.5	2.0	18.0	8.6	5.1	8.8	10.9	9.7	0.9
Si	6.0	33.0	17.0	8.5	30.0	39.0	34.0	2.9	36.0	46.0	41.0	4.8
Al	0.0	0.1	0.1	0.0	1.5	2.9	2.0	0.4	2.5	3.6	3.0	0.5

Results from Samples.

- Mean Values were used for the input.
- High nitrate (NO₃⁻) levels (45 mg/L) indicate pollution from anthropogenic sources like fertilizers and sewage.
- Calcium (Ca²⁺) and magnesium (Mg²⁺) originate from the dissolution of limestone and dolomite, while elevated sodium (Na⁺) and potassium (K⁺) levels are attributed to silicate weathering and evaporite dissolution.
- The lower concentration of K⁺ compared to Na⁺ is due to the higher resistance and lower solubility of K-silicates.
- Silicate weathering in alkaline conditions also increases aluminum (Al) and silicon (Si) in groundwater, with Si existing as quartz, chalcedony, or amorphous SiO₂.

Results from Samples.

- High sulfate (SO₄²⁻) levels result from gypsum and anhydrite dissolution and sulfide oxidation.
- Bicarbonate (HCO₃⁻), the second most dominant anion, contributes to groundwater alkalinity, with total alkalinity ranging from 15 to 98 mg/L
- Sources of HCO₃⁻ include atmospheric CO₂ dissolution, silicate weathering, and carbonate mineral dissolution.

Results from inverse modeling.

- The study involved simulating the geochemical evolution of groundwater along a flow path using PHREEQC.
- Based on chemical analysis, initial and final solution compositions were derived, with the simulations examining transitions between three groups.
- The identified minerals either dissolve or precipitate based on their saturation index values.

Inverse Modeling Flow Paths

```
\begin{aligned} & \text{Group 1 Water} + \text{CO}_2\left(g\right) + \text{Dolomite} + \text{Albite} + \text{Anorthite} \\ & + \text{Halite} + K - \text{felpspar} + \text{Fluorite} + \text{Plagioclase} \\ & + \text{Ca} - \text{from ion exchange} \rightarrow \text{Group 2 Water} + \text{Calcite} + \text{Ca} \\ & - \text{Montmorillonite} + \text{Kaolinite} + \text{Quartz} + \text{Anhydrite} \\ & + \text{Gibbsite} + \text{Na} - \text{loss to ion exchange} + \text{H}_2\text{O}\left(g\right) \end{aligned}
```

```
\begin{aligned} & \text{Group 2 water} + \text{CO}_2\left(g\right) + \text{Dolomite} + \text{Albite} + \text{Anorthite} \\ & + \text{Halite} + \text{Fluorite} + \text{Biotite} + \text{Ca} - \text{from ion exchange} \\ & \rightarrow \text{Group 3 water} + \text{Calcite} + \text{Ca} - \text{Montmorillonite} \\ & + \text{Kaolinite} + \text{Quartz} + \text{Anhydrite} + \text{Gibbsite} + \text{Na} \\ & - \text{loss to ion exchange} + \text{H}_2\text{O}\left(g\right) \end{aligned}
```

Results from inverse modeling.

- **Dissolution**: Minerals like dolomite, halite, albite, and K-feldspar dissolved along the flow path, contributing to changes in groundwater chemistry.
- **Precipitation**: Secondary minerals such as kaolinite, quartz, gibbsite, Camontmorillonite, calcite, and anhydrite precipitated.
- **Reverse Ion Exchange**: Indicated by hydro chemical inferences and played a significant role in the geochemical evolution of groundwater in this area.

Results from inverse modeling

- **Group 1 to Group 2**: Groundwater showed a dominance of Ca²⁺ over Na⁺ and Cl⁻ over other anions in Group 1.
 - As the groundwater moved to Group 2, Na⁺ became more dominant.
 - This transition involved the dissolution of halite and other minerals, as well as the evaporation of water, which increased the electrical conductivity.
 - The decrease in Ca²⁺/Mg²⁺ ratio was attributed to dedolomitization, with dolomite dissolving and calcite precipitating.
- **Group 2 to Group 3**: The concentrations of major ions increased, indicating further water-rock interactions.

What if the opposite happened?

Meaning:

- What if in group 1 Na⁺ was more abundant then Ca²⁺? What would the water-rock interactions be?
- I Used the max values from group #1 but had Na⁺ (90 mg/L) value increased and Ca²⁺ 67 (mg/L) decreased.

Result

- Phases like Gibbsite, Chlorite(14A), Ca-Montmorillonite are most likely to precipitate under the given conditions.
- H2S, CO2(g), Halite, H2O(g), among others, are in undersaturated states and will likely dissolve in the system.
- The equilibrium states for phases like Albite, Aragonite show a balance between dissolution and precipitation under the conditions provided.

--Saturation indices----Phase SI log IAP log KT Al(OH)3(a) 10.52 Al(OH)3 -1.48 9.03 Albite 0.00 4.49 4.49 NaAlSi308 Alunite -6.71 -1.94 KAl3(SO4)2(OH)6 -4.78 Anhydrite -2.04 -6.42 -4.38 CaSO4 Anorthite -0.89 23.95 24.84 CaAl2Si2O8 Aragonite 0.00 -8.36 -8.37 CaCO3 Ca-Montmorillonite 3.76 11.12 7.36 Ca0.165Al2.33Si3.67010(OH)2 Calcite 0.14 -8.36 -8.51 CaCO3 Chalcedony 0.24 -3.26 -3.50 SiO2 Chlorite(14A) 2.42 69.19 66.77 Mg5Al2Si3O10(OH)8 Chrysotile -1.64 30.02 31.66 Mg3Si2O5(OH)4 CO2(g) -2.63 -20.77 -18.14 CO2 Dolomite 0.24 -16.95 -17.19 CaMg(CO3)2 Fluorite -1.06 -11.61 -10.55 CaF2 Gibbsite 1.17 9.03 7.87 Al(OH)3 -1.84 -6.42 -4.58 CaSO4:2H2O Gypsum H2(g) -30.80 -30.80 -0.00 H2 H20(g) 1.40 H20 -1.40 -0.00 H2S(g) -40.94 H2S -101.08 -142.02 Halite -6.56 -4.97 1.59 NaCl Illite 3.29 14.70 11.41 K0.6Mg0.25Al2.3Si3.5010(OH)2 K-feldspar 1.11 3.08 1.97 KAlSi308 K-mica 9.08 21.15 12.07 KAl3Si3O10(OH)2 7.06 Al2Si2O5(OH)4 Kaolinite 4.48 11.54 N2(g) -0.20 -3.48 -3.27 N2 -43.53 -47.94 NH3(g) -4.41 NH3 02(g) -20.06 61.60 81.66 02 Quartz 0.65 -3.26 -3.92 SiO2 Sepiolite -1.07 14.57 15.65 Mg2Si307.50H:3H20 Sepiolite(d) -4.09 14.57 18.66 Mg2Si3O7.50H:3H2O Si02(a) -0.59 -3.26 -2.68 SiO2 Sulfur -76.11 -111.22 -35.11 5 Talc 2.59 23.49 20.90 Mg3Si4O10(OH)2

Question #2.

• What if the same concentrations of the ions were in the water but the pH turned basic (pH = 10) and there was too much fertilizer contamination? What are the water-rock interactions?

Result:

- Precipitates: Chalcedony, Quartz, and amorphous SiO2
- **Dissolves:** Everything Else
- Near-equilibrium Phases: H2(g) and O2(g) are relatively close to equilibrium.

SI log IAP log KT Phase Al(OH)3(a) -18.40 -7.88 10.52 Al(OH)3 Albite -21.60 -17.11 4.49 NaAlSi308 Alunite -87.41 -23.32 64.08 KAl3(SO4)2(OH)6 Anhydrite -31.52 -2.90 28.63 CaSO4 Anorthite -46.15 -21.31 24.84 CaAl2Si208 Aragonite -14.92 -23.29 -8.37 CaCO3 Ca-Montmorillonite -32.30 -24.94 7.36 Ca0.165Al2.33Si3.67O10(OH)2 Calcite -14.78 -23.29 -8.51 CaCO3 1.21 -2.29 -3.50 SiO2 Chalcedony Chlorite(14A) -110.36 -43.60 66.77 Mg5Al2Si3O10(OH)8 Chrysotile -50.22 -18.56 31.66 Mg3Si2O5(OH)4 CO2(g) -1.18 -19.32 -18.14 CO2 Dolomite -29.41 -46.60 -17.19 CaMg(CO3)2 Fluorite -10.26 -20.81 -10.55 CaF2 Gibbsite -15.75 -7.88 7.87 Al(OH)3 Gypsum -33.32 -4.90 28.43 CaSO4:2H20 H2(g) -4.00 -4.00 -0.00 H2 -2.40 -1.00 H20(g) 1.40 H20 H2S(g) -4.00 -11.93 -7.93 H2S Halite -8.41 -6.82 1.59 NaCl Illite -38.10 -26.69 11.41 K0.6Mg0.25Al2.3Si3.5010(OH)2 K-feldspar -18.55 -16.58 1.97 KAlSi308 K-mica -42.41 -30.34 12.07 KAl3Si3010(OH)2 Kaolinite -26.41 -19.35 7.06 Al2Si2O5(OH)4 N2(g) -19.71 7.43 27.14 N2 NH3(g) -13.08 -2.28 10.79 NH3 02(g) -75.66 6.00 81.66 02 Ouartz 1.62 -2.29 -3.92 SiO2 Sepiolite -34.01 -18.37 15.65 Mg2Si307.50H:3H20 Sepiolite(d) -37.03 -18.37 18.66 Mg2Si307,50H:3H20 Si02(a) 0.38 -2.29 -2.68 SiO2 Sulfur -5.83 -7.93 -2.11 S Talc -43.06 -22.15 20.90 Mg3Si4O10(OH)2

-----Saturation indices-----

References

- Fatah Bouteldjaoui & Jean-Denis Taupin. (2024) <u>Assessment of some bottled natural mineral waters and spring waters in Algeria using multivariate statistical analysis, hydrogeochemical approaches and water quality index (WQI)</u>. *International Journal of Environmental Analytical Chemistry* 104:19, pages 7589-7613.
- Kshitindra Kumar Singh, Geeta Tewari, Mamta Bisht, R. K. Tiwary, Suresh Kumar, Kiran Patni, Aabha Gangwar & Bhawana Kanyal. (2023) <u>Hydrogeochemical characteristics and multivariate statistical approach for monitoring groundwater quality scenario in the vicinity of industrial area of western Himalaya, India</u>. *Chemistry and Ecology* 39:6, pages 611-639.
- Roy, A., Keesari, T., Mohokar, H., Pant, D., Sinha, U. K., & Mendhekar, G. N. (2020). Geochemical evolution of groundwater in hard-rock aquifers of South India using statistical and modelling techniques. *Hydrological Sciences Journal*, 65(6), 951–968. https://doi.org/10.1080/02626667.2019.1708914