Transport Modeling of Oilfield Brines

BY: DAVID LACHER

GEOL 468

NDSU GEOCHEMISTRY

FALL 2014

Outline

- Need for Modeling
- Background Information and Context
- Data and Original Study
- Phreeqc Modeling
- Results
- Research Possibilities
- •Questions/Discussion

Background Information/Context

- Oil wells generate oil, natural gas, and production water
- Production water is a byproduct; not useful
- Typically have very high TDS and can contain harmful levels of heavy metals
 - TDS<30,000
- Wells can have significant output of these brines
- There is a large potential for spills
 - Pipeline leaks, injection well, illegal dumping
- 24 reported production water spills of >100 barrels in last 12 months in ND
 - Largest was 24,000 barrels
 - None were contained

Interest in Modeling

- Worked on several cleanups this past summer
- •Interested in modeling the interaction of brines with groundwater
- Modeling transport through a water column
- •Interested in an enhanced understanding as to potential impact

Data and Original Study

- Data for Brine came form Marcellus Shale in Pennsylvania
 - Study was on fracking by-products
- Very little research done on the Bakken
- Not very much modeling done on interaction of brines with the ground
- •Modeled my groundwater after possible earth constituents in Western North Dakota

Assumptions for Modeling

- No interaction with organic material ie. topsoil, vegetation
- Composition of earth
 - K-feldspar, Quartz, Kaolinite
- •Homogeneous composition throughout region of transport
- Chemistry of groundwater is the sole result of pure water interacting with K-feldspar, Quartz, Kaolinite
- Groundwater is in contact with atmosphere
- Assumption of inputs for transport modeling
 - Time interval, dipsersivities, distance, number of cells, number of shifts

tial nditions for oundwater

e Equilibrium Phases function s used to simulate groundwater eraction

pure water in equilibrium with eldspar, Quartz, and Kaolinite, 2 and 02

```
SOLUTION 1-400 Initial solution in earth temp 25
pH 7 charge units mg/l

EQUILIBRIUM_PHASES 1-400 bedrock geology K-feldspar 0 10
Kaolinite 0 10
Quartz 0 10
CO2(g) 0 10
O2(g) 0 10
```

-----Description of solution-----

```
pH = 7.088
                                                    Charge balance
                                   pe = 13.711
                                                    Adjusted to redox e
     Specific Conductance (\muS/cm, 25°C) = 24350
                       Density (g/cm^s) = 1.01386
                           Volume (L) = 1.00594
                     Activity of water = 0.991
                       Ionic strength = 2.544e-01
                    Mass of water (kg) = 9.932e-01
              Total alkalinity (eq/kg) = 2.541e-01
                    Total CO2 (mol/kg) = 2.861e-01
                      Temperature (°C) = 25.00
               Electrical balance (eq) = -3.792e-13
Percent error, 100*(Cat-|An|)/(Cat+|An|) = -0.00
                           Iterations = 13
                              Total H = 1.105078e+02
                              Total 0 = 5.595094e+01
```

Transport Modeling

Explanation of Inputs

- Cells:
 - Number of individual spaces fluid will be transferred to
- Length
 - 4 meters per cell
- Shifts
 - Number of times solution 0 passes through the cells
- Time-Step
 - Time for solution to react in each cell
 - Overal time of transport is shifts*time-step
- Dispersivities
 - Variation between cells

```
TRANSPORT
    -cells
                            400
    -length
    -shifts
    -time step
                            43200 # seconds
    -dispersivities
                            400*1
    -correct disp
                            true
    -thermal diffusion
                            1 0
    -print cells
                            40
    -print frequency
                            20
    -punch cells
                            40
    -warnings
                            false
```

Transport Modeling Continued

- Transport modeling assumes a column with a variable number of cells
 - Cell size and amount of time in each cell is variable
- The model is run by shifting solution one into the first cell and reacting it
- •The same is done for all the other cells in the column
- This is carried on continuously for a set number of shifts which is variable
- The inputs were chosen to achieve the most meaningful results possible
 - Through reading and trial and error

Brine Analysis

```
E Brine Calculation
JTION 0 Brine
           25
temp
          6.3
рН
          12.5 O2(g) 0
pe
redox
          pe
units
          mq/1
density
Alkalinity 235
          6270
Ba
          613
Br
Ca
          12500
Cl
          83500
Κ
          224
Mg
           0
Mn
           34300
Na
          3570
Sr
          1 # kg
-water
```

```
-----Description of solution-----
                                           6.300
                                    = Hq
                                    pe = 14.516
                                                      Equilibrium wit
     Specific Conductance (\muS/cm, 25°C) = 186253
                       Density (g/cm^3) = 1.10767
                            Volume (L) = 1.05135
                     Activity of water = 0.916
                        Ionic strength = 3.171e+00
                     Mass of water (kg) = 1.000e+00
                  Total carbon (mol/kg) = 6.044e-03
                     Total CO2 (mol/kg) = 6.044e-03
                      Temperature (^{\circ}C) = 25.00
                Electrical balance (eq) = -8.521e-02
Percent error, 100*(Cat-|An|)/(Cat+|An|) = -1.57
                            Iterations =
                               Total H = 1.110179e+02
                               Total 0 = 5.552499e+01
```

Results

```
-----Description of solution-----
                                                                                        -----Description of solution-----
                      pH = 7.088
                                       Charge balance
                                                                                                         pH = 6.987
                      pe = 13.711
                                       Adjusted to redox equilibrium
                                                                                                         pe = 13.823
c Conductance (\muS/cm, 25°C) = 24350
                                                                           Specific Conductance (\muS/cm, 25°C) = 119300
          Density (g/cm^3) = 1.01386
                                                                                             Density (g/cm^s) = 1.08491
              Volume (L) = 1.00594
                                                                                                  Volume (L) = 1.03284
        Activity of water = 0.991
                                                                                           Activity of water = 0.942
          Ionic strength = 2.544e-01
                                                                                              Ionic strength = 1.918e+00
       Mass of water (kg) = 9.932e-01
                                                                                          Mass of water (kg) = 9.900e-01
 Total alkalinity (eq/kq) = 2.541e-01
                                                                                    Total alkalinity (eq/kg) = 3.786e-01
       Total CO2 (mol/kg) = 2.861e-01
                                                                                          Total CO2 (mol/kg) = 3.969e-01
         Temperature (^{\circ}C) = 25.00
                                                                                            Temperature (°C) = 25.00
  Electrical balance (eq) = -3.792e-13
                                                                                     Electrical balance (eq) = -4.793e-02
100*(Cat-|An|)/(Cat+|An|) = -0.00
                                                                     Percent error, 100*(Cat-|An|)/(Cat+|An|) = -1.37
              Iterations = 13
                 Total H = 1.105078e+02
                                                                                                  Iterations = 3
                 Total 0 = 5.595094e+01
                                                                                                    Total H = 1.102721e+02
                                                                                                    Total 0 = 5.611104e+01
```

l groundwater

Groundwater after 20 Shifts

Charge balance

Adjusted to redo

Only major changes are those related to dilution of the solution

Results

Saturation indices							
Phase	SI**	log IAP	log K(298 K, 1 atm)			
Al(OH)3(a)	-3.12			Al (OH) 3			
Albite Anorthite				NaAlsi308 CaAl2si208			
Aragonite Ca-Montmorillo				CaCO3 03 Ca0.165Al2.33Si3.67010(OH)2			
Calcite	2.80	-5.68	-8.48	CaCO3			
CH4 (g) Chalcedony	-140.66 -0.43						
CO2(g) Gibbsite	-0.00 -0.43			CO2 Pressure 1.0 atm, phi 0.994 Al(OH)3			
H2 (g) H2O (g)	-41.67 -1.53						
Halite		-0.15					
Hausmannite	5.04						
K-feldspar	-0.00 4.81			KAlsi308			
K-mica Kaolinite	0.00	7.44		KA13Si3O10(OH)2 A12Si2O5(OH)4			
Manganite		28.94					
02(g) Pyrochroite	-0.00	-2.89 8.13	-2.89	02 Pressure 1.0 atm, phi 0.999			
Pyrolusite		49.73		· · ·			
Quartz	0.00	-3.98	-3.98	SiO2			
Rhodochrosite	1.14	-9.99	-11.13	MnCO3			
SiO2(a)		-3.98					
Strontianite							
Sylvite Witherite	-1.61 2.03	-0.71 -6.53		RC1 BaCO3			

- After 20 Shifts
- Highlighted are the super-saturated minerals
- Primarily minerals with carbonate ions or manganese ions
- Chance for several ions to precipitate out
 - Ca, Mn, Ca, CO3

- Pore volumes definition:
 - PV = (number of shifts + 0.5) / (number of cells)
- Essentially this is a graph of concentration at the bottom of the column as fluid is shifted through it
- Can see the comparatively rapid increase in concentration of Cl and Na compared with K and Ca

Results

- Element concentrations in original production water sample and groundwater after 20 shifts (approximately 1 pore volume)
- There is a decrease of approximately 40 percent
 - Still significant concentrations though
- Would require significant dilution to return water to normal levels

Elements	Molality	Moles
Alkalinity Ba Br Ca Cl K Mn	5.468e-03 5.316e-02 8.933e-03 3.632e-01 2.743e+00 6.671e-03 1.060e-04	5.468e-03 5.316e-02 8.933e-03 3.632e-01 2.743e+00 6.671e-03 1.060e-04
Sr	4.744e-02	4.744e-02

Elements	Molality	Moles
Al Ba	1.737e-08 3.021e-02	1.719e-08 2.990e-02
Br	5.076e-03	5.025e-03
C	3.969e-01	3.929e-01
Ca	2.063e-01	2.043e-01
Cl	1.558e+00	1.543e+00
K	3.792e-01	3.755e-01
Mn	6.022e-05	5.962e-05
Na	9.871e-01	9.773e-01
Si	5.987e-05	5.927e-05
Sr	2.696e-02	2.669e-02

Possible Future Research

- With a greater understanding of phreeqc
 - Modeling of production water contaminating streams
 - Larger scale modeling of contamination from injection well
 - Better modeling of distance of impact per volume
 - 3D modeling
- Analysis of production water for potentially harmful heavy metals
- •More data on production water from other oil fields
 - Other fields might contain drastically different chemical constituents

References

- •Haluszczak, Lara O., Arthur W. Rose, and Lee R. Kump. "Geochemical Evaluation of Flowback Brine from Marcellus Gas Wells in Pennsylvania, USA." Applied Geochemistry 28 (2013): 55-61. Web.
- "North Dakota Department of Health." http://www.ndhealth.gov/

Questions?