MODELING WATER CHEMISTRY CHANGES DURING THE DRINKING WATER TREATMENT PROCESS

Outline

- Need for Modeling
- □ Treatment Process
- □ Goals for Modeling
- Modeling Procedure
- □ Future Work/Improvements
- Questions

Need for Modeling

- Different Source Waters
 - Mixing ratios between river and wells constantly change
 - Different water sources have different chemistry
 - Better understanding would improve:
 - Chemical use efficiency
 - Better treatment
 - Save money
- Not much published yet

Treatment Process

Moorhead Water Treatment Plant (MWTP)

- Influent Water Mixing
- Sedimentation and Softening
- Ozone Disinfection/Recarbonation
- Multi-media Filtration

Goals for Modeling

- □ Three Processes:
 - Mixing
 - Softening
 - Recarbonation
- Mixing
 - Determine combined hardness and pH
- Softening
 - Hardness: 88 to 108 mg/L as CaCO₃
 - □ pH: 10.5 to 11.5
- Recarbonation
 - Hardness: 88 to 108 mg/L as CaCO₃
 - pH of 9.5 to 9.7

Modeling Procedure

- Influent Water Chemistry
- Mixing
- Softening
- Recarbonation

Simulation 1

Simulation 2

Simulation 3

- Water Sources
 - Groundwater (GW)
 - Buffalo Aquifer
 - Surface Water
 - Red River

	D. 10:	CVV
Parameter/Constituent (unit)	Red River	GW
Temperature (°C)	25.08	8.58
pH(units)	8.2	7.6
Oxidation Reduction Potential (mV)	47	96.5
Alkalinity, Bicarbonate (mg/L)	190	330
Alkalinity, Carbonate (mg/L)	2.6	1.3
Alkalinity, Total (mg/L)	190	330
Barium (µg/L)	76.9	46.6
Bromide (mg/L)	0.0496	0.0744
→ Calcium (mg/L)	51	94.6
Chloride (mg/L)	13	14.9
Iron (μ g/L)	851	1050
Magnesium (mg/L)	37.3	36.9
Manganese (µg/L)	70.4	120
Phosphate, Total (mg/L)	0.424	0.272
Potassium (mg/L)	4.6	5
Sodium (mg/L)	0.5	62.5
Strontium (µg/L)	200	504
Sulfate (mg/L)	86.7	170
Dissolved Oxygen (mg/L)	3.3	0.32

SOLUTION 1 Red River temp 25.08 pH 8.2 pe 0.7945 redox pe units mg/I density 1 Alkalinity 190 as HCO3 Ba 0.0769 Br 0.0496 Ca 51 CI 13 Fe 0.851 Mg 37.3 Mn 0.0704 P 0.424 K 4.6 Na 0.5 Sr 0.2 S(6) 86.7 O(0) 3.3 -water 1 # kg	SOLUTION 2 Well 9 temp 8.58 pH 7.6 pe 1.73 redox pe units mg/l density 1 Alkalinity 330 as HCO3 Ba 0.0466 Br 0.0744 Ca 94.6 Cl 14.9 Fe 1.05 Mg 36.9 Mn 0.12 P 0.272 K 5 Na 62.5 Sr 0.504 S(6) 170 O(0) 0.32 -water 1 # kg	MIX 1 1 0.72 2 0.28 SAVE solution 3 END
---	---	---

Prior to Mixing

- Phreeqcl Speciation
 - Ionic Strength
 - Red River: 8.262e-3
 - GW: 1.410e-2
 - Hardness
 - Red River: 252.50 mg/L
 - GW: 344.40 mg/L
 - □ pH
 - Red River: 8.2
 - GW: 7.6

After Mixing

- Phreeqcl Speciation
 - Ionic Strength
 - 9.892e-3
 - Hardness
 - 279.2 mg/L
 - □ pH
 - **7.8**

Flows: River=2500 gpm and GW=995 gpm \rightarrow 5 MGD

Mixing Ratio: 72% River to 28% GW

Softening Model

- □ Hardness is measured by amount of Ca²⁺ and Mg²⁺
- Hardness Causes:
 - Scale-pipes and fixtures
 - High soap consumption-no lathering
- □ Hardness Removal:
 - \blacksquare lime[Ca(OH)₂] and soda ash [Na₂CO₃]
 - 1. $Mg^{2+} + CO_3^{2-} + Ca(OH)_2 \rightarrow Mg(OH)_2 + CaCO_3$
 - 2. $Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 + 2Na^+$
 - precipitation of calicite [CaCO₃] and brucite [Mg(OH)₂]

Softening Model

```
Input Code
USE solution 3
REACTION 1
  Portlandite 1
  Na_2CO_3 0.5
  0.002 moles in 1 steps
EQUILIBRIUM_PHASES 1
  Brucite 00
  Calcite 00
  Portlandite 0 0
SAVE solution 4
END
```

Phreeqcl Results

■ Hardness: 96.1 mg/L

□ pH: 10.2

Recarbonation Model

- Addition of CO₂ (g)
 - Lowers pH of water
 - The softening process raises pH to a non-consumable level

Input Code

```
USE solution 4

REACTION 2

CO2(g) 1

0.0003 moles in 1 steps
```

Recarbonation Model

- Phreeqcl Results
 - Hardness
 - 102.3 mg/L
 - □ pH
 - 9.71

Conclusions

- Phreeqcl is capable of mixing two different water sources to determine combined hardness and pH
- Phreeqcl can be used to simulate water softening through lime and soda ash
 - pH however is slightly lower than expected
- Phreeqcl simulates pH adjustments at a treatment plant

Future Work/Improvements

- Ozone Disinfection
 - \blacksquare The addition of O_3 (g) to the water
 - Formation of bromate (BrO₃⁻)
- Filtration
 - pH reduction due to organics
- Removal of Organic Matter

References

- Davis M.L., Cornwell D.A. (2008). Introduction to Environmental Engineering.
 McGraw Hill, New York.
- United States Geological Survey (1998). Frequently asked questions for PHREEQC andPhreeqcl. http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/faq.html
- Viessman W., Hammer M.J., Perez E.M. Chadik P.A. (2009). Water supply & pollution control. Pearson Education Inc., New Jersey.

Questions?