Surface Complexation Modeling of Arsenic Adsorption on Iron Oxide Minerals

Sukanya Pachani Geochemistry 628 May 6, 2025

Outline

https://www.mindat.org/element/arsenic

Introduction Case Study Objectives Results Conclusion References

Arsenic - Highly Toxic Groundwater Contaminant

Different Mitigation Strategies

(Raturi et al., 2023)

Adsorption

Nano Iron for Arsenic Adsorption

Particle Size: 1–100 nm with high surface area

Removes: As(III), As(V), Cr(VI), Pb(II), organic pollutants
Application: Nano iron oxides show high arsenic affinity (Das & Bezbaruah, 2021; Das et al., 2020)

Das et al., 2020

Surface Complexation Model in PHREEQC

In all surface complexation models, sorption is a function of both chemical and electrostatic energy as described by the free energy relationship:

 ΔG tot = ΔG ads + $zF\psi$

PHREEQC has two models for surface complexation:

- Dzombak and Morel, 1990
- CD-MUSIC

Surface Complexation Model in PHREEQC

CASE STUDY

Omoregie et al. 2013,

Arsenic bioremediation by biogenic iron oxides and sulfides, Applied and environmental microbiology, 79(14), 4325-4335

CASE STUDY

Objective:

To model arsenic (As) removal from groundwater via sorption onto biogenic iron (Fe(III)) oxides formed by microbial oxidation of Fe(II), using PHREEQC geochemical modeling.

Methodology:

- Developed a 1D reactive transport model in PHREEQC.
- Simulated microbial oxidation of Fe(II) and subsequent precipitation of Fe(III) as Hfo (hydrous ferric oxide).
- ❖ Modeled arsenic adsorption onto the formed Hfo using surface complexation.

CASE STUDY

Reactions of Surface Species

Reaction	Log K
$Hfo_sOH + H^{+} = Hfo_sOH^{2+}$	7.29
$Hfo_wOH + H^+ = Hfo_wOH^{2+}$	7.29
$Hfo_sOH = Hfo_sO^- + H^+$	-8.93
$Hfo_wOH = Hfo_wO^- + H^+$	-8.93
$Hfo_sOH + H_3AsO_3 = Hfo_sH_2AsO_3 + H_2O$	5.41
$Hfo_wOH + H_3AsO_3 = Hfo_wH_2AsO_3 + H_2O$	5.41
$Hfo_sOH + H_3AsO_4 = Hfo_sH_2AsO_4 + H_2O$	8.61
$Hfo_wOH + H_3AsO_4 = Hfo_wH_2AsO_4 + H_2O$	8.61
$Hfo_sOH + H_3AsO_4 = Hfo_sHAsO_4^- + H_2O + H^+$	2.81
$Hfo_wOH + H_3AsO_4 = Hfo_wHAsO_4^- + H_2O + H^+$	2.81
$Hfo_sOH + H_3AsO_4 = Hfo_sOHAsO_4^{-3} + 3H^+$	-10.12
$Hfo_wOH + H_3AsO_4 = Hfo_wOHAsO_4^{-3} + 3H^+$	-10.12
\ \\\	

OBJECTIVE

- Change the pH of the solution
- Track the change in surface area of the Hfo
- Compare with experimental results (Das et al., 2020)

```
SURFACE 1
SURFACE 1
                                            # assumes 1/10 of iron is HFO
# assumes 1/10 of iron is HFO
                                                 Hfo sOH
                                                             7e-6
                                                                    88.
                                                                          30
    Hfo sOH 5e-6 600. 30
                                                Hfo wOH
                                                             2e-4
              2e-4
    Hfo wOH
                                                 -donnan
    -donnan
                                            END
END
                                            SOLUTION 1
SOLUTION 1
                                                pH
                                                       4.0
   Hq
      9.2
                                                       4.0
   pe 4.0
                                                pe
   temp 25.
                                                temp
                                                      25.
                                                redox pe
   redox pe
                                                units
                                                      mmol/kgw
   units
        mmol/kgw
                                                density 1
   density 1
                                                N(5) 100
   N(5)
        100
                                                Na 100 charge
   Na 100 charge
                                                      0.338
   As 0.338
                                                As
                                                -water 1 # kg
   -water 1 # kg
```

nitial solution	on			Final solution	on			
Solution composition			Solution composition					
Elements	Elements Molality Moles As 3.380e-04 3.380e-04 N(5) 1.000e-01 1.000e-01		les	Element	s Molali	ty Mo	Moles	
As			-04	As	8.916e-	8.916e-06 8.916e-06 1.000e-01 1.000e-01		
N(5)			-01	N	1.000e-			
Na	9.990e-	02 9.990e	-02 Charge	Na	1.001e-	01 1.001e	-01	
	Di	stribution	of species-		Di	stribution	of species	
			Log				Log	
Species	Molality	Activity	Molality	Species	Molality	Activity	Molality	
H+	1.280e-04	1.000e-04	-3.893	H+	1.280e-06	1.000e-06	-5.893	
OH-	1.318e-10	1.004e-10	-9.880	OH-	1.318e-08	1.004e-08	-7.880	
H20	5.551e+01	9.966e-01	1.744	H2O	5.551e+01	9.966e-01	1.744	
As (3)	3.054e-04			As(3)	1.100e-27			
H3AsO3	3.054e-04	3.054e-04	-3.515	H3AsO3	1.099e-27	1.099e-27	-26.959	
H4As03+	2.194e-08	1.513e-08	-7.659	H2As03-	8.175e-31	5.638e-31	-30.088	
H2AsO3-	2.271e-09	1.566e-09	-8.644	H4As03+	7.897e-34	5.447e-34	-33.103	
HAs03-2	6.311e-17	1.428e-17	-16.200	HAs03-2	2.272e-36	5.142e-37	-35.644	
As03-3	1.558e-25	5.506e-27	-24.807	As03-3	0.000e+00	0.000e+00	-42.251	
As (5)	3.260e-05			As (5)	8.916e-06			
H2AsO4-	3.211e-05	2.215e-05	-4.493	H2AsO4-	6.682e-06	4.609e-06	-5.175	
H3AsO4	3.761e-07	3.849e-07	-6.425	HAsO4-2	2.233e-06	5.054e-07	-5.651	
HAs04-2	1.073e-07	2.429e-08	-6.969	H3AsO4	7.827e-10	8.009e-10	-9.106	
As04-3	2.173e-14	7.680e-16	-13.663	As04-3	4.523e-11	1.598e-12	-10.345	

		Sur	face compos	ition								
	Diffuse Double Layer Surface-Complexation Model											
	Hfo s											
	7.000e-06 mo	les										
	,		Mole		Log							
	Species	Moles	Fraction	Molality	_							
	Hfo_sOH2+	6.154e-06	0.879	6.154e-06	-5.211							
	Hfo sOH	4.721e-07	0.067	4.721e-07	-6.326							
	Hfo sHAsO4-	2.215e-07	0.032	2.215e-07	-6.655							
,	Hfo sH2AsO4	9.342e-08	0.013	9.342e-08	-7.030							
	Hfo sOHAsO4-3	5.801e-08	0.008	5.801e-08	-7.236							
	Hfo sO-	8.296e-10	0.000	8.296e-10	-9.081							
	Hfo_sH2AsO3	8.260e-29	0.000	8.260e-29	-28.083							
	Hfo w											
	2.000e-04 mo	les										
			Mole		Log							
	Species	Moles	Fraction	Molality	Molality							
	Hfo wOH	1.116e-04	0.558	1.116e-04	-3.952							
	Hfo wHAsO4-	5.237e-05	0.262	5.237e-05	-4.281							
	Hfo wH2AsO4	2.209e-05	0.110	2.209e-05	-4.656							
	Hfo_wOHAsO4-3	1.372e-05	0.069	1.372e-05	-4.863							
	Hfo_wO-	1.962e-07	0.001	1.962e-07	-6.707							
	Hfo wOH2+	8.769e-20	0.000	8.769e-20	-19.057							
	Hfo wH2AsO3	1.953e-26	0.000	1.953e-26	-25.709							
	_											

- Smaller HFO particles and lower pH conditions led to significantly higher arsenic adsorption.
- ❖ The PHREEQC model predicted an increase of ~75% arsenic removal under these conditions.
- This is less compared with experimental results from Das et al. (2020), which reported >95% arsenic removal.

CONCLUSION

- ❖ Differences in predicted vs. observed values may be due to the approximation of HFO as nano iron in the model
- Nano iron and HFO have different surface complexation constants (log K), which affects adsorption predictions
- Accurate modeling of arsenic adsorption on nanomaterials (e.g., nZVI, graphene oxide, nano-magnetite) requires a comprehensive and standardized thermodynamic database

REFERENCES

- Das, T. K., Sakthivel, T. S., Jeyaranjan, A., Seal, S., & Bezbaruah, A. N. (2020). Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications. *Chemosphere*, 253, 126702.
- Das, T. K., & Bezbaruah, A. N. (2021). Comparative study of arsenic removal by iron-based nanomaterials: Potential candidates for field applications. Science of the Total Environment, 764, 142914.
- Dzombak, D. A., & Morel, F. M. (1991). Surface complexation modeling: hydrous ferric oxide. John Wiley & Sons.
- Omoregie, E. O., Couture, R. M., Van Cappellen, P., Corkhill, C. L., Charnock, J. M., Polya, D. A., ... & Lloyd, J. R. (2013). Arsenic bioremediation by biogenic iron oxides and sulfides. *Applied and environmental microbiology*, 79(14), 4325-4335.
- Raturi, Gaurav, Anchal Chaudhary, Varnika Rana, Rushil Mandlik, Yogesh Sharma, Vitthal Barvkar, Prafull Salvi et al. "Microbial remediation and plant-microbe interaction under arsenic pollution." Science of the Total Environment 864 (2023): 160972.
- Siddiqui, S. I., & Chaudhry, S. A. (2017). Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. *Process Safety and Environmental Protection*, 111, 592-626.
- Upadhyaya, G., & Roychoudhury, A. (2022). Arsenic-toxicity and tolerance: Phytochelatin-mediated detoxification and genetic engineering-based remediation. In Global Arsenic Hazard: Ecotoxicology and Remediation (pp. 481-508). Cham: Springer International Publishing.

