# Inverse Modeling of the upper Patapsco Aquifer, Maryland

Meridith Ramsey December 4, 2012 NDSU Geochemistry 628

### Purpose

- To determine the age of groundwater along the northern and southern flow paths.
- Dated by <sup>14</sup>C, <sup>36</sup>Cl, and <sup>4</sup>He
- The aquifer is being increasingly used as a drinking water source, they wanted to know how long it takes to recharge the aquifer.
- To model geochemical changes in composition of groundwater along the flow paths.
- Pyrite precipitates and dissolves, want to find where it occurs using inverse modeling in PHREEQC

Original Paper

My Project

# Hydrogeologic Setting of the upper Patapsco Aquifer

- Located in Maryland, in a series of aquifers called the Atlantic Coastal Plain
- The Coastal Plain sediments consist of layers unconsolidated sand, gravel, silt, and clay of varying thickness
  - Upper Patapsco is composed fine to medium grained quartoze sands and silt and clay.
- The aquifer has two parallel flow paths, the northern and southern from the outcrop belt to where it discharges in the Atlantic Ocean or Chesapeake Bay





- A map of the Maryland region.
- Northern and southern flow paths are labeled, well locations are also marked



#### Methods

- Collected water samples from 16 wells along the flow paths (6 on the north path, 10 on the south)
  - 7 of the wells were sampled twice for quality assurance
- Authors dated the water samples using radiocarbon, Chlorine-36, and helium-4
- They used NetPath, similar to PHREEQC, to model the water chemistry of the aquifer

## My Methods

- Used inversed modeling available in PHREEQC to look for changes in the chemistry.
- The original paper mentions that pyrite and calcite both dissolve and precipitate in various places along the flow path, but didn't mention where it occurs.
- Inverse modeling has the ability to find where it occurs.

## Original Paper's Results

- The water in the upper Patapsco aquifer is very old, spanning multiple glaciations
- Based on paleorecharge temperatures, most of the water samples were recharged during past glacial periods, water from the Last Glacial Maximum was sampled at well N-4
- Water is anywhere from modern aged at the beginning of the flow path to a million years old (S-10)



# My Results

PHREEQC returned very low, undersaturated SI values on almost all the minerals. Only Siderite (FeCO3) was consistently supersaturated.

Saturation Indices for Minerals



#### Northern Flow Path Results

| Phase Mole Transfers |           |           |  |  |  |  |  |
|----------------------|-----------|-----------|--|--|--|--|--|
|                      | calcite   | Pyrite    |  |  |  |  |  |
| N-1 to N-2           | 1.01E-02  | 5.15E-03  |  |  |  |  |  |
| N-2 to N-3           | 1.03E-04  | 1.34E-06  |  |  |  |  |  |
| N-3 to N-4           | 4.13E-04  | 2.28E-04  |  |  |  |  |  |
| N-4 to N-5           | -5.51E-05 | -1.26E-04 |  |  |  |  |  |
| N-5 to N-6           | 3.04E-04  | -3.69E-06 |  |  |  |  |  |

| Redox Mole Transfers |           |           |           |  |  |  |
|----------------------|-----------|-----------|-----------|--|--|--|
|                      | Fe (3)    | O (0)     | S (-2)    |  |  |  |
|                      |           |           |           |  |  |  |
| N-1 to N-2           | -4.96E-03 | 3.29E-04  | 1.03E-02  |  |  |  |
|                      |           |           |           |  |  |  |
| N-2 to N-3           |           | 9.38E-06  | 2.68E-06  |  |  |  |
|                      |           |           |           |  |  |  |
| N-3 to N-4           |           | -8.75E-06 | 4.56E-04  |  |  |  |
|                      |           |           |           |  |  |  |
| N-4 to N-5           |           | 3.75E-06  | -2.45E-04 |  |  |  |
|                      |           |           |           |  |  |  |
| N-5 to N-6           | -5.54E-05 | 1.88E-06  | -7.37E-06 |  |  |  |

- Tables showing phase mole transfers and redox reactions occurring between each well location
- Mole transfers that are positive indicate dissolution; mole transfers that are negative indicate precipitation
- When no transfer occurs, the samples have the same composition within the uncertainty used (no reaction occurred between them)

#### Southern Flow Path Results

| Phase Mole Transfers |           |           |  |  |  |  |  |
|----------------------|-----------|-----------|--|--|--|--|--|
|                      | Calcite   | Pyrite    |  |  |  |  |  |
| S-1 to S-2           | -1.77E-04 | -1.36E-05 |  |  |  |  |  |
| S-2 to S-3           | 4.21E-04  | 2.03E-04  |  |  |  |  |  |
| S-3 to S-4           | -4.74E-06 | -2.20E-05 |  |  |  |  |  |
| S-4 to S-5           |           | 2.68E-07  |  |  |  |  |  |
| S-5 to S-6           |           | -1.86E-07 |  |  |  |  |  |
| S-6 to S-7           | 1.05E-05  | 1.29E-05  |  |  |  |  |  |
| S-7 to S-8           |           |           |  |  |  |  |  |
| S-8 to S-9           | 3.74E-06  | -9.17E-07 |  |  |  |  |  |
| S-9 to S-10          | -1.38E-02 | -3.39E-03 |  |  |  |  |  |

| Redox Mole Transfers |           |           |           |  |  |  |  |
|----------------------|-----------|-----------|-----------|--|--|--|--|
|                      | Fe (3)    | O (0)     | S (-2)    |  |  |  |  |
| S-1 to S-2           | 2.15E-05  | -1.88E-06 | -2.72E-05 |  |  |  |  |
| S-2 to S-3           | -2.19E-04 | 2.50E-06  | 4.07E-04  |  |  |  |  |
| S-3 to S-4           | 1.90E-05  |           | -4.40E-05 |  |  |  |  |
| S-4 to S-5           |           | 1.88E-06  | 5.36E-07  |  |  |  |  |
| S-5 to S-6           | -3.87E-07 | -1.11E-06 | -3.72E-07 |  |  |  |  |
| S-6 to S-7           | -1.28E-05 | 6.25E-07  | 2.58E-05  |  |  |  |  |
| S-7 to S-8           |           |           |           |  |  |  |  |
| S-8 to S-9           | 9.17E-07  | -6.88E-06 | -1.83E-06 |  |  |  |  |
| S-9 to S-10          | 3.39E-03  | 4.37E-06  | -6.78E-03 |  |  |  |  |

 No results for S-7 to S-8, even with changing the uncertainty and phases and trying to get a result, the samples are too similar for a reaction to occur

#### Discussion

- The water is very dilute, all SI values are very low, very undersaturated.
- Mole transfers of pyrite and calcite occur in several places, no reaction at all occurs between other wells.
- Redox reactions also occur
- ▶ Both calcite and pyrite dissolve in to the water between wells N-1 to N-4, more variability on the southern flow path

#### Well S-10

- ▶ Well S-10 located furthest along the southern flow path
- Had positive SI results for Calcite, Dolomite, and Siderite (supersaturated)

|               |        | -Saturat | ion indi | ces          | Solution f            | ractio | ns:         | Minimum     | Maximum    |            |
|---------------|--------|----------|----------|--------------|-----------------------|--------|-------------|-------------|------------|------------|
|               |        |          |          |              | Solutio               | n 9    | 9.996e-001  | 0.000e+000  | 0.000e+000 |            |
| Phase         | SI     | log IAP  | log KT   |              | Solutio               | n 10   | 1.000e+000  | 0.000e+000  | 0.000e+000 |            |
| Anhydrite     | -4.11  | -8.48    | -4.37    | CaSO4        | Phase mole            | trans  | fers:       | Minimum     | Maximum    |            |
| Aragonite     | -0.10  | -8.45    | -8.35    | CaCO3        | Ca                    | lcite  | -4.682e-004 | 0.000e+000  | 0.000e+000 | CaCO3      |
| Calcite       | 0.04   | -8.45    | -8.50    | CaCO3        |                       | CaX2   | -6.678e-003 | 0.000e+000  | 0.000e+000 | CaX2       |
| CH20          | -54.49 | -54.49   | 0.00     | CH2O         |                       | CH20   | 1.271e-002  | 0.000e+000  | 0.000e+000 | CH2O       |
| CO2 (g)       | -2.63  | -4.13    | -1.50    | CO2          | Dol                   | omite  | 2.432e-005  | 0.000e+000  | 0.000e+000 | CaMg (CO3) |
| Dolomite      | 0.34   | -16.82   | -17.15   | CaMg (CO3) 2 | Goe                   | thite  | 3.389e-003  | 0.000e+000  | 0.000e+000 | FeOOH      |
| Fluorite      | -1.84  | -12.40   | -10.57   | CaF2         |                       | ypsum  | 7.144e-003  | 0.000e+000  | 0.000e+000 | CaSO4:2H2  |
| Gypsum        | -3.90  | -8.48    | -4.58    | CaS04:2H20   |                       | Malite | 1.800e-003  | 0.000e+000  | 0.000e+000 | NaCl       |
| H2 (g)        | -25.18 | -28.34   | -3.16    | H2           | -                     | NaX    | 1.336e-002  | 0.000e+000  | 0.000e+000 | NaX        |
| H2O(g)        | -1.44  | -0.00    | 1.44     | H20          | F                     | yrite  | -3.389e-003 | 0.000e+000  | 0.000e+000 | FeS2       |
| Halite        | -6.26  | -4.67    | 1.59     | NaCl         |                       | 12200  | 0.0052 000  | 0.00000.000 | 0.0000.000 | 1002       |
| Hausmannite   | -8.40  | 51.94    | 60.34    | Mn304        | Redox mole transfers: |        | fers:       |             |            |            |
| Manganite     | -3.83  | 21.51    | 25.34    | MnOOH        | nedon more            | Fe (3) | 3.389e-003  |             |            |            |
| Melanterite   | -8.69  | -10.87   | -2.18    | FeSO4:7H20   |                       | 0(0)   | 4.366e-006  |             |            |            |
| 02 (g)        | -2.64  | -5.55    | -2.91    | 02           |                       | S(-2)  | -6.779e-003 |             |            |            |
| Pyrochroite   | -6.28  | 8.92     | 15.20    | Mn (OH) 2    |                       | 5(2)   | -0.7750-003 |             |            |            |
| Pyrolusite    | -6.84  | 34.10    | 40.94    | MnO2         | 72                    |        | N 120 10 20 | 19 Vi       | 120202     | 202        |
| Rhodochrosite | -0.71  | -11.85   | -11.14   | MnCO3        |                       |        |             |             |            |            |
| Siderite      | 0.07   | -10.84   | -10.91   | FeCO3        |                       |        |             |             |            |            |

# Future Studies/Things to do Differently

- ▶ Look at Well S-10 further, is there evidence of a salt water intrusion?
- A different method than Inverse Modeling might be more effective in looking for changes
- Study the changes in isotopes, attempt to see where the other glacial maximums occurred
- The uncertainties were really high (0.2+) to make the model run, probably changed the results from what is actually occurring

#### References

- Frequently Asked Questions for PHREEQC and Phreeqcl. (1999, February 3). Retrieved from PHREEQC (Version 2)—A Computer Program for Speciation, Batch–Reaction, One–Dimensional Transport, and Inverse Geochemical Calculations: http://wwwbrr.cr.usgs.gov/projects/ GWC\_coupled/phreeqc/faq.html
- Plummer, L. N., et al (2012). Old Groundwater in parts of the upper Patapsco Aquifer, Atlantic Coastal Plain, Maryland, USA: evidence of radiocarbon, chlorine-36 and helium-4. *Hydrogeology Journal*, 1269-1294.

