GEOCHEMICAL TEMPERATURE ANALYSIS OF SALINE LAKES OF THE NORTHERN GREAT PLAINS

Adam Sagaser

Geology 428-Geochemistry

December 11, 2014

Overview

- Introduction of study area
- Hypothesis/Guiding Question
- Study overview
- Phreeqc results
- Conclusion

Northern Great Plains

- Approximately 3.5 million saline lakes
- Breeding ground for 80% of North America ducks
- "Glauber's Salt" (mirabilite: Na₂SO₄ * 10H₂O)
 - \$50,000,000 to area economy

Northern Great Plains

- High evaporation to precipitation ratios
- Endorheic drainage: No outflow to external bodies of water
- Salinity varies greatly amongst saline lakes.

How will the geochemistry of saline lakes be affected by increases in temperature?

Table 1. Average brine compositions of lakes in the northern Great Plains (ion concentrations in $\underline{mmol}\ L^{-1}$).

Area	TDS (ppt)	Ca	Mg	Na	K	HCO ₃	CO ₃	Cl	SO ₄
Eastern Prairies	3	3	23	4	1	6	1	2	24
Central Saskatchewan	24	15	156	192	5	9	2	50	251
SW Sask. & SE Alberta	81	18	98	1094	4	98	36	29	1070
West-central Sask & East- central Alta	103	4	141	1369	10	287	44	107	1215

The Study

- With increases in Earth temperatures and CO₂, a series of phreeqc analyses were conducted
- Increase in temp = 25°C + 5°C
- pCO₂ Equilibrium phase doubled

Low T

High T

Eastern Prairies

```
TITLE Run 1

SOLUTION 1

temp 25

pe

units mmol/L

Ca 3

C 1 as CO3-2

Cl 2

Mg 23

K 1

Na 4

S 24 as SO4-2

EQUILIBRIUM_PHASES 1

CO2(g) 0.00039

END
```

```
TITLE Run 2

SOLUTION 1

temp 30

pe

units mmol/L

Ca 3

C 1 as CO3-2

Cl 2

Mg 23

K 1

Na 4

S 24 as SO4-2

EQUILIBRIUM PHASES 1

CO2(g) 0.00078

END
```

West-Central Sask & East-Central Alberta

```
TITLE Run 3
SOLUTION 1
temp 25
pe
units mmol/L
Ca 4
C 44 as CO3-2
Cl 107
Mg 141
K 10
Na 1369
S 1215 as SO4-2
EQUILIBRIUM_PHASES 1
CO2(g) 0.00039
END
```

```
TITLE Run 4

SOLUTION 1
temp 30
pe
units mmol/L
Ca 4
C 44 as CO3-2
Cl 107
Mg 141
K 10
Na 1369
S 1215 as SO4-2

EQUILIBRIUM_PHASES 1
CO2(g) 0.00078

END
```

Low T

```
pH = 4.652 Charge balance

pe = 13.246 Adjusted to redox equilibrium

Activity of water = 0.999

Ionic strength = 6.405e-02

Mass of water (kg) = 1.000e+00

Total alkalinity (eq/kg) = 8.641e-04

Total CO2 (mol/kg) = 3.448e-02

Temperature (deg C) = 25.000

Electrical balance (eq) = 6.159e-03

Percent error, 100*(Cat-|An|)/(Cat+|An|) = 9.05

Iterations = 16

Total H = 1.110133e+02
```

```
-----Description of solution-----
                                  pH = 4.687
                                                    Charge balance
                                  pe = 12.578
                                                    Adjusted to redox equilibrium
     Specific Conductance (uS/cm, 30 oC) = 3490
                      Density (g/cm3) = 0.99896 (Millero)
                    Activity of water = 0.999
                       Ionic strength = 6.194e-02
                   Mass of water (kg) = 1.000e+00
              Total alkalinity (eq/kg) = 8.712e-04
                   Total CO2 (mol/kg) = 3.044e-02
                   Temperature (deg \bar{C}) = 30.000
               Electrical balance (eq) = 6.152e-03
Percent error, 100*(Cat-|An|)/(Cat+|An|) = 9.33
                           Iterations = 12
                             Total H = 1.110133e+02
                             Total 0 = 5.566427e+01
```

High T

```
------Description of solution-----
                                pH = 6.217
                                                 Charge balance
                                pe = -1.068
                                                 Adjusted to redox equilibrium
                   Activity of water = 0.950
                      Ionic strength = 2.800e+00
                   Mass of water (kg) = 1.000e+00
             Total alkalinity (eq/kg) = 4.971e-02
                  Total CO2 (mol/kg) = 6.754e-02
                  Temperature (deg C) = 25.000
              Electrical balance (eq) = -1.081e+00
Percent error, 100*(Cat-|An|)/(Cat+|An|) = -29.22
                         Iterations = 9
                            Total H = 1.110615e+02
                            Total 0 = 6.146679e+01
```

Total 0 = 5.567236e+01

```
-----Description of solution------
                                pH = 6.252
                                                Charge balance
                                pe = -1.025
                                                Adjusted to redox equilibrium
                   Activity of water = 0.950
                      Ionic strength = 2.787e+00
                  Mass of water (kg) = 1.000e+00
             Total alkalinity (eq/kg) = 4.993e-02
                  Total CO2 (mol/kg) = 6.563e-02
                 Temperature (deg C) = 30.000
              Electrical balance (eq) = -1.082e+00
Percent error, 100*(Cat-|An|)/(Cat+|An|) = -29.34
                         Iterations = 7
                            Total H = 1.110615e+02
                            Total 0 = 6.146310e+01
```

Low T	High T
-------	--------

		Satur	ation in	dices
Phase	sı	log IAP	log KT	
Anhydrite	-0.92	-5.28	-4.36	CaSO4
Aragonite	-3.57	-11.90	-8.34	CaCO3
Calcite	-3.42	-11.90	-8.48	CaCO3
CH4 (g)	-119.00	-121.86	-2.86	CH4
CO2 (g)	0.00	-1.47	-1.47	CO2
Dolomite	-5.85	-22.94	-17.09	CaMg (CO3) 2
Gypsum	-0.70	-5.28	-4.58	CaSO4:2H2O
H2 (g)	-36.19	-39.34	-3.15	H2
H2O(g)	-1.51	-0.00	1.51	H20
H2S(g)	-114.71	-115.71	-1.00	H2S
Halite	-6.88	-5.30	1.58	NaCl
02 (g)	-10.80	-13.69	-2.89	02
Sulfur	-84.40	-79.52	4.88	S

		Satur	ation in	dices
Phase	SI	log IAP	log KT	
Anhydrite	-0.91	-5.30	-4.39	CaSO4
Aragonite	-3.46	-11.83	-8.37	CaCO3
Calcite	-3.32	-11.83	-8.51	CaCO3
CH4 (g)	-113.03	-115.93	-2.90	CH4
CO2 (g)	0.00	-1.52	-1.52	CO2
Dolomite	-5.60	-22.80	-17.20	CaMg (CO3) 2
Gypsum	-0.71	-5.30	-4.58	CaSO4:2H2O
H2 (g)	-34.51	-37.69	-3.17	H2
H2O(g)	-1.38	-0.00	1.38	H20
H2S(g)	-108.88	-109.93	-1.05	H2S
Halite	-6.89	-5.30	1.59	NaCl
02 (g)	-12.46	-15.39	-2.93	02
Sulfur	-80.16	-75.40	4.77	S

	Saturation indices				
Phase	SI	log IAP	log KT		
Anhydrite	-0.12	-4.48	-4.36	CaSO4	
Aragonite	-0.82	-9.16	-8.34	CaCO3	
Calcite	-0.68	-9.16	-8.48	CaCO3	
CH4 (g)	-13.99	-16.85	-2.86	CH4	
CO2 (g)	0.00	-1.47	-1.47	CO2	
Dolomite	0.31	-16.78	-17.09	CaMg (CO3) 2	
Gypsum	0.06	-4.52	-4.58	CaSO4:2H2O	
H2 (g)	-9.95	-13.10	-3.15	H2	
H2O(g)	-1.53	-0.02	1.51	H20	
H2S(g)	-11.63	-12.63	-1.00	H2S	
Halite	-2.69	-1.11	1.58	NaCl	
02 (g)	-63.32	-66.22	-2.89	02	
Sulfur	-7.55	-2.67	4.88	S	

		Satur	ation in	dices
Phase	sı	log IAP	log KT	
Anhydrite	-0.11	-4.50	-4.39	CaSO4
Aragonite	-0.72	-9.09	-8.37	CaCO3
Calcite	-0.58	-9.09	-8.51	CaCO3
CH4 (g)	-16.67	-19.57	-2.90	CH4
CO2 (g)	0.00	-1.52	-1.52	CO2
Dolomite	0.52	-16.68	-17.20	CaMg (CO3) 2
Gypsum	0.04	-4.54	-4.58	CaSO4:2H2O
H2 (g)	-10.44	-13.61	-3.17	H2
H2O(g)	-1.40	-0.02	1.38	H20
H2S(g)	-14.44	-15.49	-1.05	H2S
Halite	-2.71	-1.11	1.59	NaCl
02 (g)	-60.66	-63.59	-2.93	02
Sulfur	-9.80	-5.04	4.77	S

Discussion

- Subtle pH increases with temperature and CO₂.
- Slight change in SI values
- Samples with different TDS notice similar changes

Conclusion

- Results vary subtly with Temperature and CO₂ increase in saline lakes
- pH increase in both Eastern Prairies and West-Central Saskatchewan
- More accurate predictions for temp and CO₂ can be analyzed, as well as other variables that may cause differences in SI and pH.

Last, W.M., Ginn, F.M. The chemical composition of saline lakes of the Northern Great Plains, Western Canada. Geochemical News 141, October 2009.