

POROSITY CHANGES IN THE JANGGI BASIN

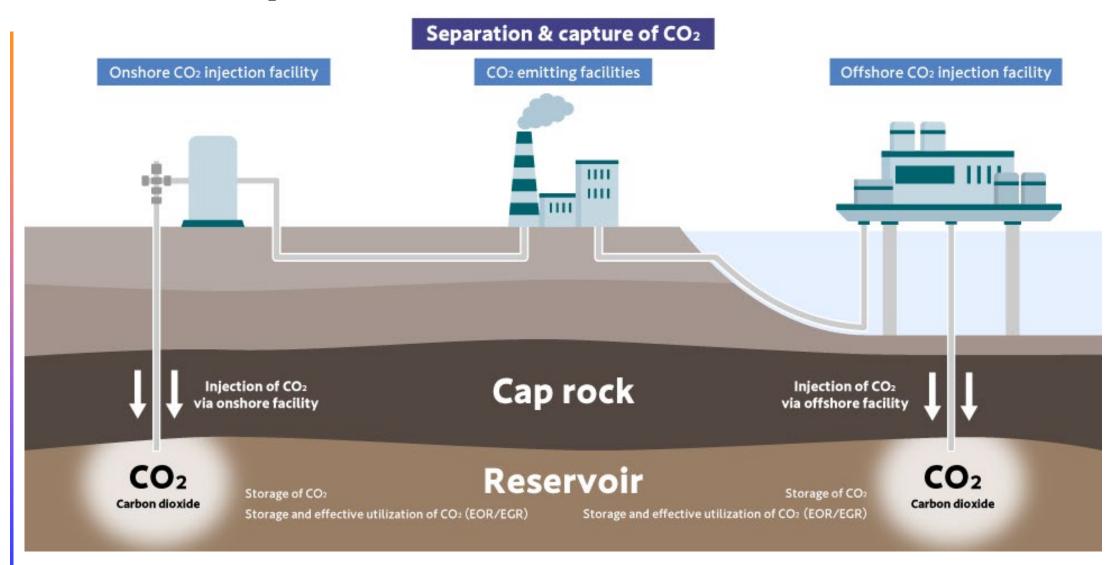
ARTICLE BY: JINYOUNG PARK, BYOUNG-YOUNG CHOI, MINJUNE YANG

PRESENTATION BY: TAYLOR SEVERANCE

05/01/2025 CHEM 428

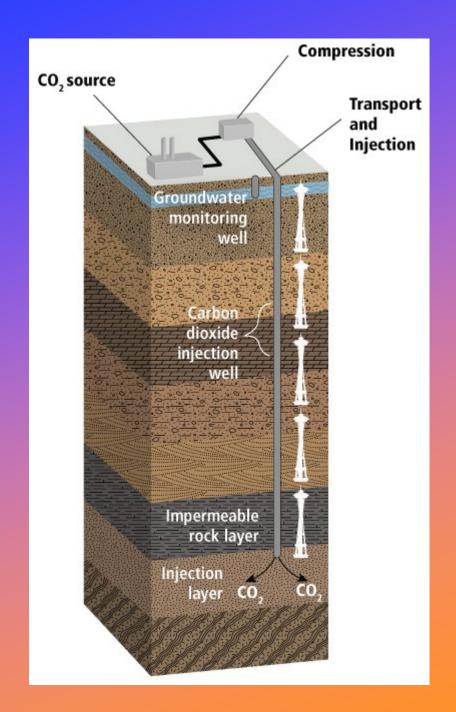
AGENDA

Introduction


Background

Methods

Geochemical Modeling


Summary

CO2 Capture

CO2 Reservoirs

- Places that can securely contain CO2 over long periods of time
 - Depleted Oil and gas reservoirs
 - Layers of porous rock
 - Basalt Formations
 - Solidified lava: potential to convert injected CO2 to solid mineral
 - Shale Basins
 - Sedimentary rock characterized by thin horizontal layers with very low permeability in the vertical direction: Good adsorption for CO2 storage

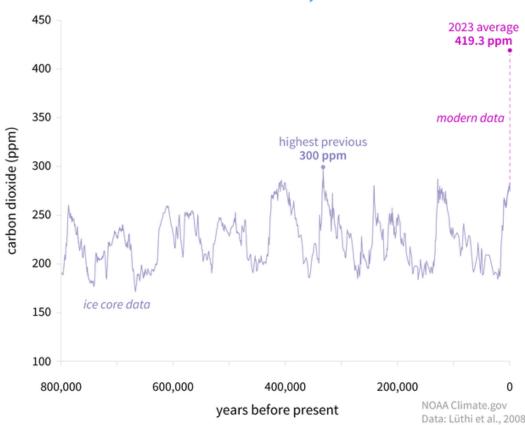
CAP ROCKS

Form over the top of reservoirs and create a layer that is impervious to fluid flow (fluids prevented from escaping the reservoir)

- When a rock that is harder to break down (resists weathering)
 overlies an easier to break down rock (less resistant to weathering)
 the rock on top is the cap rock
- Develop from solution of salt from the top of a salt core; leaves a residue of insoluble anhydrite that is later altered to gypsum, calcite and sulfur.

Often formed from shale, anhydrite or salts

Ranges from 0 to 300 meters thick


Can protect the more delicate layers from weather and erosion OR cap rock can remain while the more delicate lower layers are weathered and eroded under it.

THE ARTICLE

RESEARCH PROBLEM

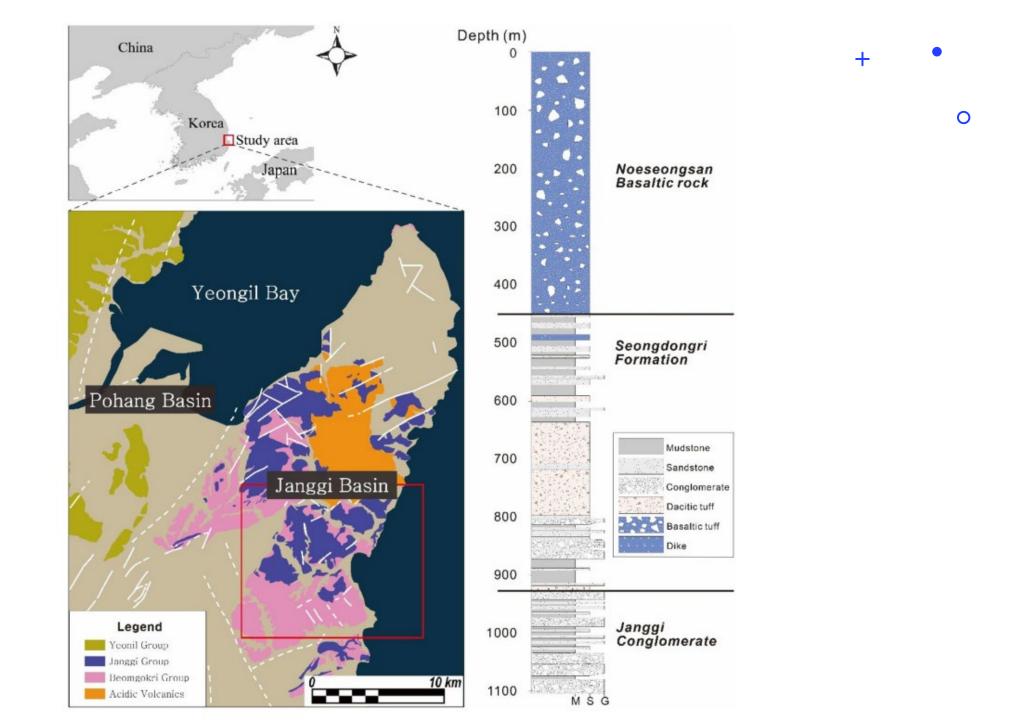
CARBON DIOXIDE OVER 800,000 YEARS

CO2 accounts for 2/3 of Earth warming

Atmospheric CO2 419.3ppm in 2023

CO2 storage

- Uncertainties of geochemical storage
 - The CO2 injected into reservoirs migrates upward due to its buoyancy, resulting in contact with cap rocks. Acidic conditions promote CO2–water–cap rock interactions.
 - Dissolution of carbonate rocks through acidic CO2-water mixtures
 - These geochemical reactions can affect pore water quality but also shape the pore and pore throat morphologies.


Table 1 Mineral components of the basaltic tuff determined using powder X-ray diffraction (XRD)

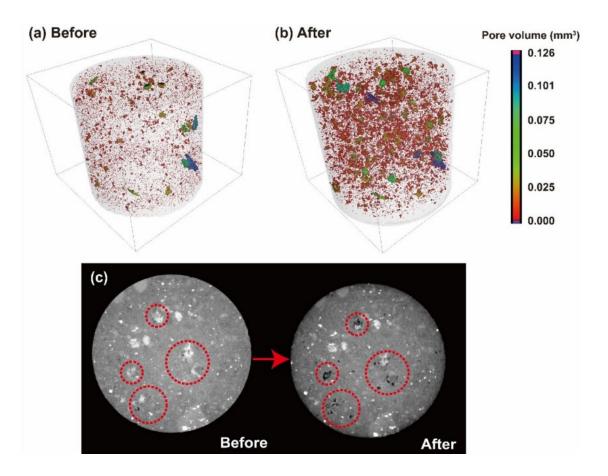
Mineral	Weight %
Plagioclase	29.9
Smectite	23.4
Clinoptilolite	22.9
Analcime	6.3
Pyroxene	9.5
Stilbite	6.2
Quartz	1.8

JANGGI BASIN

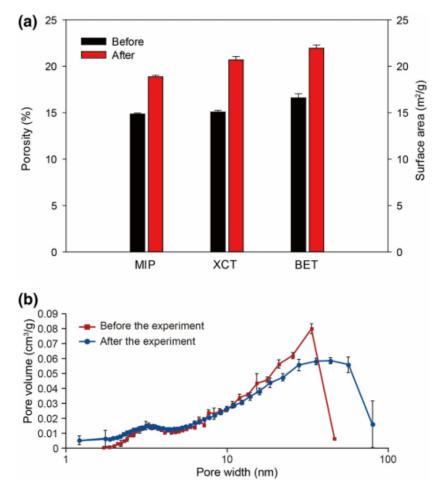
- Miocene sedimentary basin in southeastern South Korea
- Formed by the opening of the East Sea associated with (NNW)-trending dextral strike-slip faults and (NNE)- to (NE)-trending normal faults
 - Mainly filled with volcanic and nonmarine sedimentary deposits
- Basaltic Rock (mainly basaltic tuff) distributed at various depths depending on the basin structure and was observed to exist at depth of approximately 450 meters below the surface from a borehole
- Identify the geochemical reactivity of basaltic tuff as a cap rock and its effect on porosity changes by CO2– water–rock interactions

Park, J., Choi, BY., Lee, M. et al. Porosity changes due to analcime in a basaltic tuff from the Janggi Basin, Korea: experimental and geochemical modeling study of CO₂–water–rock interactions. *Environ Earth Sci* **80**, 81 (2021). https://doi.org/10.1007/s12665-

EXPERIMENTAL METHODS


Solid Sampling

- 1. Mineralogical analysis with X-ray diffraction
- 2. Changes in surface area by N2 adsorption
- 3. Porosity changes by 3D x-ray CT scans


PREPARATION

- 1. 13.77 g of the total rock samples and 140 ml of distilled water were filled in a reactor.
- 2. The reactor was purged with gaseous CO2 to remove oxygen from the water and then pressurized to 100 bar of CO2 gas using a syringe pump
- 3. The experiment was run at 50 °C and 100 bar for 84 days without a stirrer.

PHYSICAL RESULTS

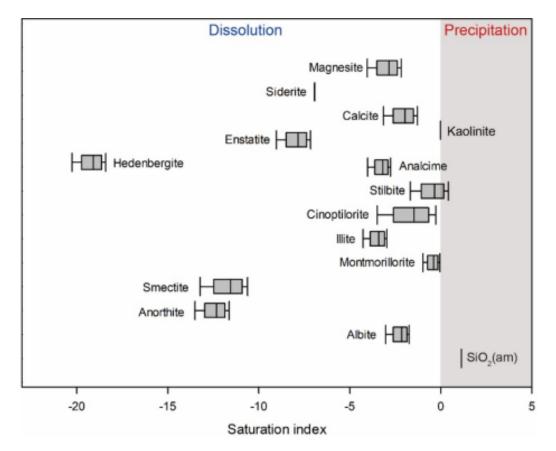
Three-dimensional images of pore volume in basaltic tuff after experiment using XCT scan.

Comparison of porosities and surface areas. Error bars are standard deviation of the mean.

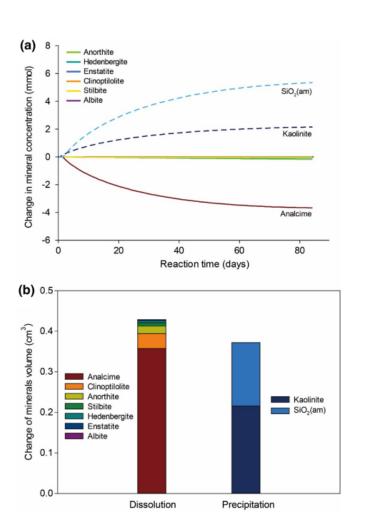
GEOCHEMICAL MODELING

Concentration

- Kinetic reaction modeling for CO2–water–basaltic tuff interactions was conducted using PHREEQC.
- Lawrence Livermore National Laboratory (LLNL) database.
- Plagioclase was represented as albite and anorthite in a ratio of 1:2.13 based on the molar ratio of Ca and Na.
- Pyroxene was represented as enstatite and hedenbergite in a ratio of 1:1.15 from the molar ratio of Fe, Mg, and Ca.
- The possible secondary minerals considered were calcite, dolomite, illite, kaolinite, magnesite, magnetite, montmorillonite, siderite, and SiO2 (am).


Kinetics

Rate calculated by rate law equation


$$= A[k_a \exp\left[\frac{-E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right) a_{H+}^{na} \left(1 - \frac{Q}{k}\right)\right] \\ + k_{nu} exp\left[\frac{-E_n}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right) \left(1 - \frac{Q}{k}\right)\right] \\ + k_b exp\left[\frac{-E_b}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right) a_{H+}^{nb} \left(1 - \frac{Q}{k}\right)\right]]$$

- $E = activation\ energy\ |\ Q = reaction\ product\ |\ k = equilibrium\ constant\ |\ A = specific\ reactive\ surface\ area\ |\ a = activity\ |\ n = power\ constant\ |\ R = gas\ constant$
- Calculated for all minerals and then modeled

MODELING RESULTS

Saturation indices of primary and secondary minerals.

0

a. Changes in the mineral concentrations in the basaltic tuff sample by CO2–water–rock interaction. **b.** Changes in mineral volumes. Left bar represents dissolved volume of primary minerals. Right bar represents the precipitated volume of secondary minerals.

MY GEOCHEMICAL MODELING

My goals:

- Track SI's of the primary and secondary minerals
- Calculate concentration of ions
- Model pH of solution after interactions
- Model kinetics of the system

SOLUTION_MASTER_SPECIES Ca(+2) Ca+2 1 Ca	SOLUTION_MASTER_SPECIES Ca(+2) Ca+2 2.513e-06 Ca		
Al(+3) Al+3 l Al	Al(+3) Al+3 5.062e-07 Al		
Fe(+2) Fe+2 1 Fe	Fe(+2) Fe+2 1.485e-09 Fe		
Fe(+3) Fe+3 -2 Fe	Fe(+3) Fe+3 1.485e-09 Fe		
K(+) K+ 1 K	K(+) K+ 1 K		
Na(+) Na+ 1 Na	Na(+) Na+ 1.876e-08 Na		
Mg(+2) Mg+2 1 Mg	Mg(+2) Mg+2 2.798e-08 Mg		
Si(0) SiO2 1 SiO2	Si(0) SiO2 2.777e-06 SiO2		
SOLUTION 1 temp 50 -pressure 98.6923 pH 7 units mol/1 density 1 -water 1 #kg	SOLUTION 1 temp 50 -pressure 98.6923 pH 7 units mol/1 density 1 -water 1 #kg		
EQUILIBRIUM_PHASES 1	SOLUTION 1 EQUILIBRIUM_PHASES 1		
Albite Anorthite Calcite Quartz Enstatite Hedenbergite Analcime Clinoptilolite-Ca Stilbite CO2(g) -2.0 dolomite kaolinite magnesite magnetite	Albite 0.0 Anorthite 0.0 Calcite 0.0 Quartz 0.0 Enstatite 0.0 Hedenbergite 0.0 Analcime 0.0 Clinoptilolite-Ca 0.0 Stilbite 0.0 CO2(g) -2.0 dolomite 0.0 kaolinite 0.0 magnesite 0.0		
siderite	magnetite 0.0 siderite 0.0		

+

CONCENTRATION AND SI'S

-----Phase assemblage-----

		_		Mo	oles in asse	mblage
Phase	SI	log IAP 1	log K(T, P)	Initial	Final	Delta
Albite	-14.88	-13.00	1.89	1.000e+01	1.960e+01	9.600e+00
Analcime	-12.34	-7.35	4.99	1.000e+01	0	-1.000e+01
Anorthite	-13.50	8.82	22.32	1.000e+01	3.725e+01	2.725e+01
CO2 (g)	-9.20	-17.19	-7.99	1.000e+01	0	-1.000e+01
Calcite	-9.90	-8.44	1.46	1.000e+01	8.497e-02	-9.915e+00
Clinoptilolit	e-Ca -43.5	2 -52.40	-8.88	1.000e+	01	0 -1.000e+0
Enstatite	-9.46	0.69	10.15	1.000e+01	1.000e+01	-1.415e-05
Hedenbergite	-15.74	2.06	17.80	1.000e+01	0	-1.000e+01
Quartz	-2.50	-6.10	-3.61	1.000e+01	1.324e+02	1.224e+02
Stilbite	-22.00	-22.47	-0.47	1.000e+01	1.000e+01	1.667e-08
Dolomite	-20.47	-18.84	1.63	1.000e+01	2.000e+01	1.000e+01
Kaolinite	-4.55	0.07	4.62	1.000e+01	0	-1.000e+01
Magnesite	-12.05	-10.40	1.66	1.000e+01	0	-1.000e+01
Magnetite	-5.53	1.95	7.47	1.000e+01	1.009e+01	8.500e-02
Siderite	-11.00	-11.68	-0.67	1.000e+01	1.991e+01	9.915e+00

-----Solution composition-----

Elements	Molality	Moles
Al	1.443e-07	5.062e-07
C	1.933e-10	6.779e-10
Ca	7.165e-07	2.513e-06
Fe	4.234e-10	1.485e-09
K	0.000e+00	0.000e+00
Mg	7.978e-09	2.798e-08
Na	5.350e-09	1.876e-08
Si	7.916e-07	2.777e-06

-----Phase assemblage-----Moles in assemblage Phase SI log IAP log K(T, P) Initial Delta Albite -14.5511.89 2.66 1.000e+01 1.960e+01 9.600e+00 -5.99 Analcime -12.056.06 1.000e+01 0 -1.000e+01 Anorthite -13.1713.31 26.48 1.000e+01 1.725e+01 7.250e+00 CO2 (q) -11.24-19.07 -7.831.000e+01 0 -1.000e+01 Calcite -10.77-8.95 1.82 1.000e+01 4.009e+01 3.009e+01 Clinoptilolite-Ca -41.04 -48.56 -7.52 1.000e+01 0 -1.000e Enstatite -10.690.60 11.29 1.000e+01 3.000e+01 2.000e+01 1.000e+01 Hedenbergite -15.553.98 19.53 0 -1.000e+01 Quartz -2.43-6.46 -4.031.000e+01 1.124e+02 1.024e+02 -19.26 Stilbite -20.07 1.000e+01 1.000e+01 1.667e-08 Dolomite -23.43-20.96 1.000e+01 0 -1.000e+01 Kaolinite -3.533.18 1.000e+01 2.000e+01 1.000e+01 6.72 Magnesite -14.28-12.01 2.27 1.000e+01 0 -1.000e+01 -7.28 3.14 10.42 1.000e+01 Magnetite 1.009e+01 8.500e-02 Siderite -12.08-12.30 -0.221.000e+01 1.991e+01 9.915e+00

-----Solution composition-----

Elements	Molality	Moles
Al	1.999e-07	5.572e-07
C	1.172e-11	3.267e-11
Ca	7.443e-07	2.074e-06
Fe	3.418e-10	9.525e-10
K	0.000e+00	0.000e+00
Mg	6.421e-10	1.790e-09
Na	2.025e-09	5.643e-09
Si	3.538e-07	9.861e-07

CONCENTRATION AND SI'S CONT.

-----Phase assemblage-----

		_		Mo	oles in asse	mblage
Phase	SI	log IAP	log K(T, P)	Initial	Final	Delta
Albite	-14.55	-11.89	2.66	1.000e+01	1.960e+01	9.600e+00
Analcime	-12.05	-5.99	6.06	1.000e+01	0	-1.000e+01
Anorthite	-13.17	13.31	26.48	1.000e+01	1.725e+01	7.250e+00
CO2 (g)	-11.24	-19.07	-7.83	1.000e+01	0	-1.000e+01
Calcite	-10.77	-8.95	1.82	1.000e+01	4.009e+01	3.009e+01
Clinoptilolite	-Ca -41.0	-48.5	6 -7.52	1.000e+0	01	0 -1.000e+01
Enstatite	-10.69	0.60	11.29	1.000e+01	3.000e+01	2.000e+01
Hedenbergite	-15.55	3.98	19.53	1.000e+01	0	-1.000e+01
Quartz	-2.43	-6.46	-4.03	1.000e+01	1.124e+02	1.024e+02
Stilbite	-20.07	-19.26	0.81	1.000e+01	1.000e+01	1.667e-08
Dolomite	-23.43	-20.96	2.47	1.000e+01	0	-1.000e+01
Kaolinite	-3.53	3.18	6.72	1.000e+01	2.000e+01	1.000e+01
Magnesite	-14.28	-12.01	2.27	1.000e+01	0	-1.000e+01
Magnetite	-7.28	3.14	10.42	1.000e+01	1.009e+01	8.500e-02
Siderite	-12.08	-12.30	-0.22	1.000e+01	1.991e+01	9.915e+00

Elements	Molality	Moles
Al	1.999e-07	5.572e-07
C	1.172e-11	3.267e-11
Ca	7.443e-07	2.074e-06
Fe	3.418e-10	9.525e-10
K	0.000e+00	0.000e+00
Mg	6.421e-10	1.790e-09
Na	2.025e-09	5.643e-09
Si	3.538e-07	9.86le-07

-----Phase assemblage-----

				M	oles in asse	mblage
Phase	SI	log IAP	log K(T, P)	Initial	Final	Delta
Albite	-23.70	-21.04	2.66	1.960e+01	0	-1.960e+01
Analcime	-17.63	-11.57	6.06	1.124e+02	1.328e+02	2.042e+01
Anorthite	-19.05	7.42	26.48	1.725e+01	0	-1.725e+01
CO2 (g)	-7.56	-15.39	-7.83	1.000e+01	0	-1.000e+01
Calcite	-15.66	-13.84	1.82	4.009e+01	2.650e+02	2.249e+02
Clinoptilolite	-Ca -75.	56 -83.	08 -7.52	1.000e+	01 1.991e+	01 9.911e+00
Enstatite	-18.96	-7.68	11.29	3.000e+01	2.548e+02	2.248e+02
Hedenbergite	-37.69	-18.16	19.53	1.124e+02	0	-1.124e+02
Quartz	-5.36	-9.39	-4.03	1.124e+02	0	-1.124e+02
Stilbite	-33.11	-32.30	0.81	1.000e+01	1.000e+01	1.667e-08
Dolomite	-29.99	-27.51	2.47	1.124e+02	0	-1.124e+02
Kaolinite	0.64	7.35	6.72	2.000e+01	3.000e+01	1.000e+01
Magnesite	-15.95	-13.68	2.27	1.124e+02	0	-1.124e+02
Magnetite	-2.54	7.88	10.42	1.009e+01	1.001e+01	-8.362e-02
Siderite	-16.10	-16.32	-0.22	1.991e+01	1.324e+02	1.125e+02

Elements Molality Moles

Al 8.264e+01 1.127e-08
C 4.463e+01 6.087e-09
Ca 1.496e-21 2.041e-31
Fe 5.885e-04 8.027e-14
K 0.000e+00 0.000e+00
Mg 9.862e-22 1.345e-31
Na 3.440e-17 4.693e-27
Si 8.479e-05 1.156e-14

-

O

CONT.

	Phase	assemblage
1		Moles in assemblane

		7		M	oles in asse	mblage
Phase	SI	log IAP	log K(T, P)	Initial	Final	Delta
Albite	-23.32	-20.67	2.66	1.960e+01	0	-1.960e+01
Analcime	-18.62	-12.57	6.06	1.328e+02	1.532e+02	2.042e+01
Anorthite	-14.69	11.78	26.48	1.725e+01	0	-1.725e+01
CO2 (g)	-9.74	-17.57	-7.83	1.000e+01	0	-1.000e+01
Calcite	-14.23	-12.41	1.82	4.009e+01	0	-4.009e+01
Clinoptilolite	e-Ca -59.8	-67.3	7 -7.52	1.000e+	01 2.304e+	01 1.304e+01
Enstatite	-16.26	-4.97	11.29	3.000e+01	0	-3.000e+01
Hedenbergite	-33.02	-13.49	19.53	1.124e+02	1.198e+02	7.410e+00
Quartz	-4.23	-8.25	-4.03	1.124e+02	0	-1.124e+02
Stilbite	-26.76	-25.95	0.81	1.000e+01	1.000e+01	1.667e-08
Dolomite	-29.17	-26.69	2.47	1.124e+02	1.397e+02	2.733e+01
Kaolinite	0.58	7.30	6.72	2.000e+01	1.487e+01	-5.130e+00
Magnesite	-16.56	-14.29	2.27	1.124e+02	1.151e+02	2.673e+00
Magnetite	-10.51	-0.09	10.42	1.009e+01	9.979e+00	-1.108e-01
Siderite	-19.50	-19.72	-0.22	1.991e+01	1.261e+01	-7.299e+00

-----Solution composition-----

Elements	Molality	Moles
Al	4.744e+01	2.202e-08
C	3.509e-02	1.629e-11
Ca	6.300e-20	2.925e-29
Fe	1.299e-07	6.029e-17
K	0.000e+00	0.000e+00
Mg	3.915e-22	1.817e-31
Na	3.873e-20	1.798e-29
Si	5.545e-05	2.574e-14

	рН	
Iteration 1	7.449	
Iteration 2	6.128	
Iteration 3	6.128	
Iteration 4	5.651	
Iteration 5	5.636	

+

KINETICS

```
KINETICS 1
      Analcime
               -m0 0.174
                                   # 6.3% Analcime, 0.1 mm cylinders
               -m 0.174
                                   # Moles per L pore space
               -parms 6.04 0.1 # m^2/mol Albite, fraction adjusts lab rate to field rate
               -time 84 days
1 REM Sverdrup and Warfvinge, 1995, mol m^-2 s^-1
2 REM PARM(1) = Specific area of Albite m^2/mol Albite
3 REM PARM(2) = Adjusts lab rate to field rate
4 REM temp corr: from A&P, p. 162 E (kJ/mol) / R / 2.303 = H in H^*(1/T-1/281)
5 REM Albite parameters
10 DATA 11.5, 0.5, 4e-6, 0.4, 500e-6, 0.2, 13.7, 0.14, 0.15, 11.8, 0.3
20 RESTORE 10
30 READ pK_H, n_H, lim_Al, x_Al, lim_BC, x_BC, pK_H2O, z_Al, z_BC, pK_OH, o_OH
40 DATA 3500, 2000, 2500, 2000
50 RESTORE 40
60 READ e_H, e_H2O, e_OH, e_CO2
70 pk CO2 = 13
80 n CO2 = 0.6
100 REM Generic rate follows
110 \text{ dif temp} = 1/TK - 1/281
120 BC = ACT("Na+") + ACT("K+") + ACT("Mg+2") + ACT("Ca+2")
130 REM rate by H+
140 pk H = pk H + e H * dif temp
150 rate H = 10^-pk H * ACT("H+")^n H / ((1 + ACT("Al+3") / lim Al)^x Al * (1 + BC / lim BC)^x BC)
160 REM rate by hydrolysis
170 pk_H2O = pk_H2O + e_H2O * dif_temp
180 rate H2O = 10^-pk_H2O / ((1 + ACT("A1+3") / lim_A1)^z_A1 * (1 + BC / lim_BC)^z_BC)
190 REM rate by OH-
200 pk OH = pk OH + e OH * dif temp
210 rate OH = 10^-pk OH * ACT("OH-")^o OH
220 REM rate by CO2
230 pk_CO2 = pk_CO2 + e_CO2 * dif_temp
240 rate CO2 = 10^-pk CO2 * (SR("CO2(g)"))^n CO2
250 rate = rate H + rate H2O + rate OH + rate CO2
260 area = PARM(1) * M0 * (M/M0)^0.67
270 rate = PARM(2) * area * rate * (1-SR("Albite"))
280 moles = rate * TIME
290 SAVE moles
-end
END
```

```
KINETICS 1
       Analcime
Anal
                                               Albite
                                                    2.303 = H in H*(1/T-1/281)
                                                        0.15, 11.8, 0.3
                   lim Al. x
                                                             z_BC, pK_OH, o_OH
                  , 2500, 2000
                 O, e_OH, e_CO2
                 ate follows
                 TK - 1/281
                  ) + ACT("K+") + ACT("Mg+2")
                    H * dif temp
                    H * ACT("H+") ^n H / ((1 + ACT("Al-
                      lysis
                        H2O * dif temp
                         0 / ((1 + ACT("A1+3") / lim A1)^z A1
210
220
230 pk
240 rate
250 rate
260 area =
270 rate = PA
280 moles = rat
290 SAVE moles
-end
END
```

SUMMARY

- Porosity of the basaltic tuff increased predominantly because of the dissolution of primary minerals
 - Primary mineral that contributed most was porosity
 - Continued CO2-water-rock interactions will lead to an increasing acidification which will always influence surface area and porosity
 - More research is needed to properly determine sealing capacity of cap rock because analcime was only 6.3% by weight of the basaltic tuff
- pH will decrease and create a more acidic environment with time in the set parameters
- SI's were majority primary minerals
- Kinetics is hard to model ©

REFERENCES

Herzog, H., & Golomb, D. (n.d.). *Carbon Capture and Storage from Fossil Fuel Use 1*. Retrieved April 28, 2025, from https://sequestration.mit.edu/pdf/enclyclopedia of energy article.pdf

Editors of Encylopaedia Britannica. (n.d.). *Salt dome | geology | Britannica*. Www.britannica.com. Retrieved April 28, 2025, from https://www.britannica.com/science/salt-dome

Miller, B. G. (2017, January 1). *13 - Carbon Dioxide Emissions Reduction and Storage* (B. G. Miller, Ed.). ScienceDirect; Butterworth-Heinemann. https://www.sciencedirect.com/science/article/abs/pii/B9780128113653000132

Park, J., Choi, BY., Lee, M. *et al.* Porosity changes due to analcime in a basaltic tuff from the Janggi Basin, Korea: experimental and geochemical modeling study of CO₂—water—rock interactions. *Environ Earth Sci* **80**, 81 (2021). https://doi.org/10.1007/s12665-021-09370-

THANK YOU

 \circ

O

