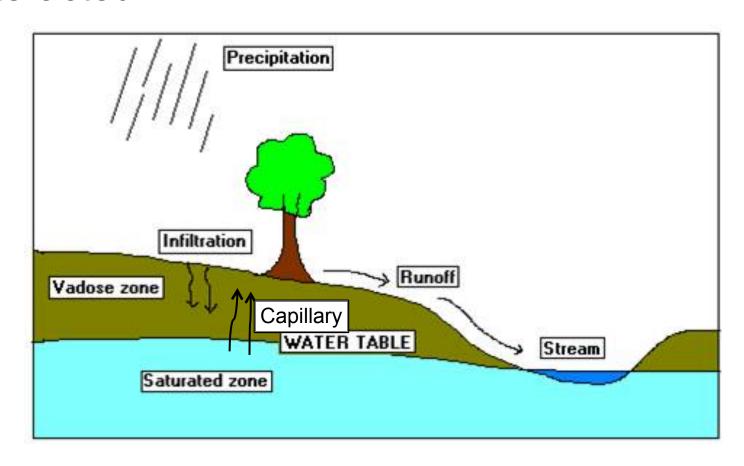
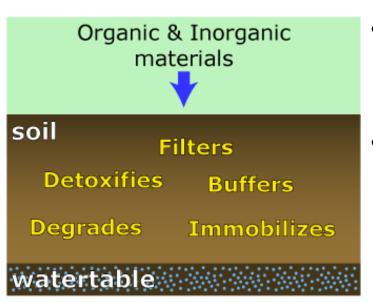
Understanding relationships between soil properties and shallow groundwater with spatial variability

Yangbo He Geochemistry 628 NDSU 12/6/2012

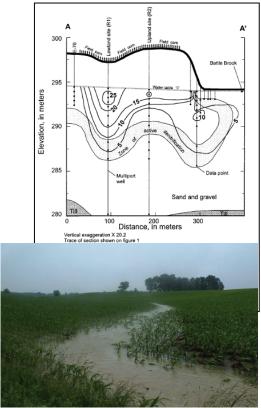
Outline


- Objectives of that study
- Soil & groundwater relationship in field
- ▶ Results analysis by Derby et al. (2012)
- PHREEQC analyses


Determine the relationships among soil properties (topography, WT, EC, texture, pH), soil and groundwater quality (EC, pH, DO, DOC, and major ions) data in field

Introduction

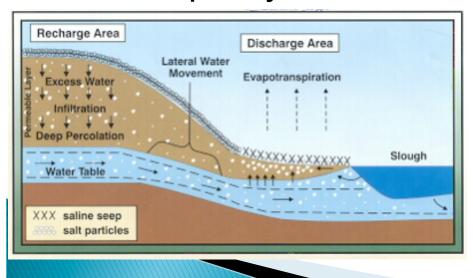
Soil, groundwater, and land surface are interacted


Function of soils

- Agricultural nonpoint source (NPS) pollution is the leading source of water quality impacts (EPA)
- Activities: sediment, nutrients, pesticides, and salts

- Groundwater chemical analysis from agriculture field affected by soil topography
 - Example, NO₃⁻N

 Lowland Upland by depression focused events



Groundwater

- Capillary and precipitation of salts from shallow water table in depression areas
 - Soil EC increase, saline/sodic soils
 - Subsequent recharge dissolve salts and transport to water table

Help develop surface management and improve

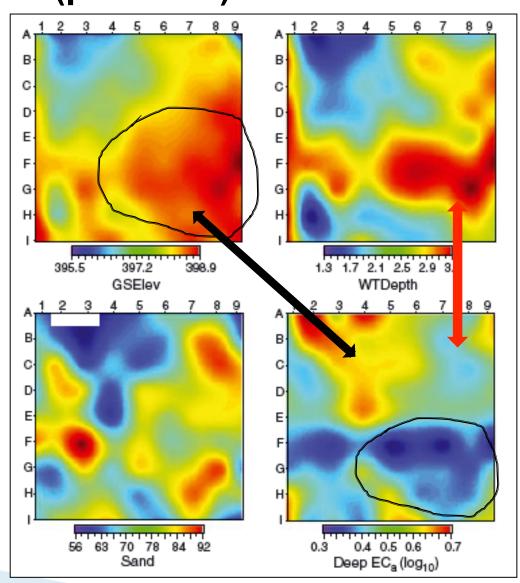
GW quality

Research Site

- The field is under pivot sprinkler irrigation
- ➤ Topography of field is gently sloping, and numerous small depressions 50-100m wide (<1m lower than surrounding areas of field)
- Different soil series in the field (loamy fine sand and fine sandy texture)
- ➤ 80 grid shallow GW monitoring wells (9 wells on each transect by every 100m) were installed in 1989 and 1992

Sample H2O the upper0.3-0.6m of the saturated zone

Soil core is taken for analysis

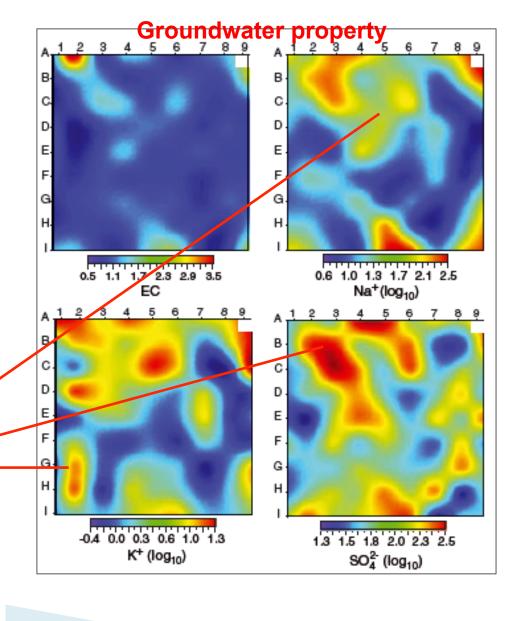

He

Wy

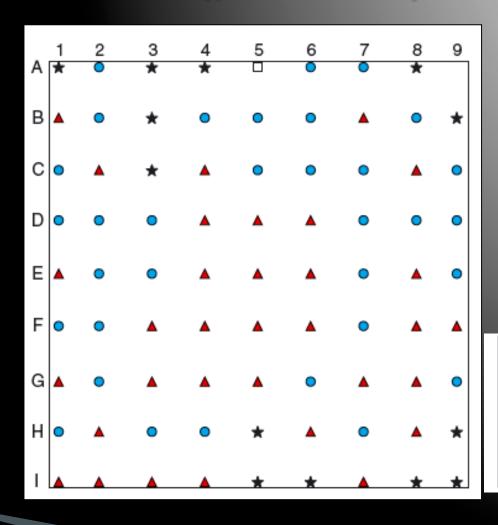
Note the second of the second o

Ground surface and soils is related in spatial pattern (previous)

- Statistically related by PASSaGE2, PCA, Inverse distance method, AqQA
- Soil EC is inversely corresponding with GSElev (Lefttop vs. right bottom graph)
- Soil EC is also related with WTDepth


Shallow groundwater interact with soil

(previous)


High soil EC areas are found by from shallow groundwater where it has high EC, HCO₃-, and Na⁺

Sodic or salt-affected soils is formed in snowmelt spring with subsequent evapotranspiration in summer in shallow depression areas

> 0.4 0.5 0.6 Deep EC_a (log₁₀)

Spatial distribution of water facies (previous)

- Mg-HCO₃
- Ca-HCO₃
- ★ Na-HCO₃
- □ Ca-SO₄
- X Irrigation

PHREEQC--objectives

- The relationship between groundwater and soil were demonstrated statistically related but is not explained in detail
- Potential mechanism of irrigation water reaction with shallow groundwater
- ▶ GW speciation with soil surface elevation? Why dominant anion is HCO3⁻, and major facies?
- Soil series effect (i.e. N contamination) on GW

Example Data Input

Irrigation water

Average Concentrations and Annual Application Rates of Ions Supplied in the Irrigation Water on the 53.4-ha Irrigated Portion of the Field for 1991 and 1992

	Average Concentration (mg/L)	Average Annual Application Rate (kg/ha/year)
$NO_3^ N$	1.4	1
$NO_2^ N$	< 0.1	< 0.1
$NH_3^ N$	< 0.1	< 0.1
$PO_4^{3-} - P$	< 0.1	< 0.1
Cl ⁻	49	35
SO_4^{2-}	174	125
Ca ²⁺	82	59
SO ₄ ²⁻ Ca ²⁺ Mg ²⁺	41	29
Na ⁺	83	60
K ⁺	11	8

Well A2

temp	25
pH	7
pe	4
redox	pe
units	mg/l
density	1
N(5)	0.13
N(-3)	0.13
S(6)	86.85
Cl	36.32
Alkalinit	y 358.9
C	427.33
Ca	104.3
Mg	30.9
Na	49.05
K	13.15
0(0)	1.08
P	0.14
water	1 # kg

Well H7

temp	25
pН	7
pe	4
redox	pe
units	mg/l
density	1
N(5)	24.38
N(3)	0.13
N(-3)	0.15
P	0.01
S(6)	163.5
Cl	29.2
Alkalinit	y 181.3
С	234.84
Ca	128.1
Mg	42.9
Na	4.45
K	1.5
0(0)	3.83
water	1 # kg

Solution

Solution 2

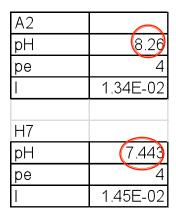
Solution 3

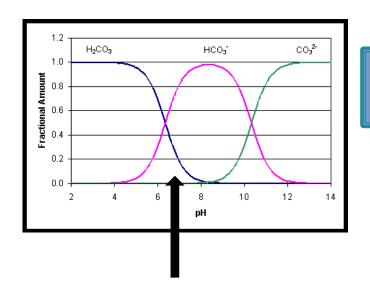
Irrigation meet GW variation

Irrigation water		Mix irr	igation with A2	N	Mix with H7		
Species	Molality	Species	Molality	Species	Molality		
		HCO3-	3.27E-03	HCO3-	1.73E-03		
SO4-2	1.38E-03	SO4-2	1.04E-03	SO4-2	1.31E-03		
Ca+2	1.84E-03	Ca+2	2.05E-03	Ca+2	2.34E-03		
NO3-	1.00E-04	NO3-	5.93E-05	NO3-	9.31E-04		
		N2	4.46E-21	N2	5.06E-19		
		NO2-	7.28E-17	NO2-	4.60E-16		

- Irrigation water is dominated by SO₄²⁻, Ca²⁺, and has low NO₃-,
- After mixing with GW (A2 low depression), the dominant anion is HCO_3^- , Ca^{2+} did not change, total N increase while NO_3^- decreased by denitrification
- After mixing with H7(high water table), the dominant anion is HCO₃-, Ca²⁺ did not change, and amount of NO₃- increased INTERACTION

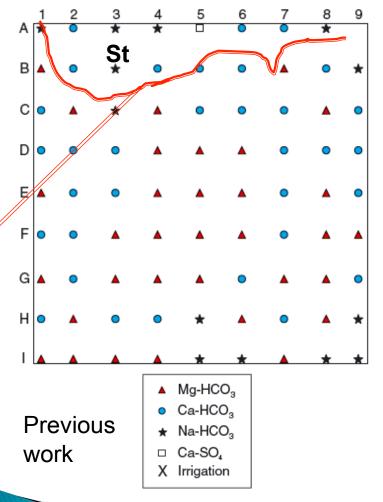
Why dominant type is Ca,Mg-HCO3 type?


- The dominant HCO3 type is related with the possible minerals reaction
- The PHREEQC output of the wells
 - CaSO4 SI: -2.64 to -1.17 <0, undersaturated
 - Gypsum SI: -2.39 to -0.91<0, undersaturated
 - Calcite SI: -1.12 to 0.36, some undersaturated and some supersaturated
 - Dolomite (CaMg(CO₃)₂) SI: -2.41 to 0.48, some undersaturated and some supersaturated
 - Aragonite (CaCO₃) SI: -1.27 to 0.21, some undersaturated and some supersaturated

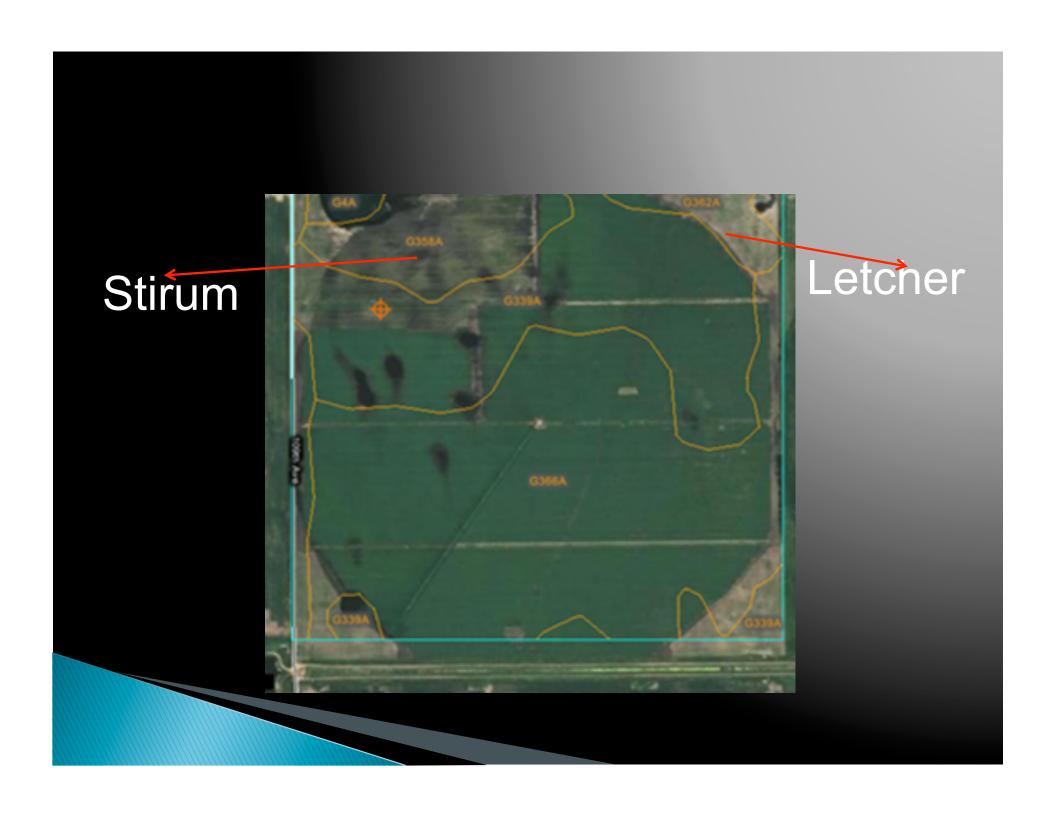

Low vs. high elevation

Well # A2
Soil series Stirium
WSElev (m) 395.48
WTD(m) 1.4

Well #	H7
Soil series	Hecla
WSElev (m)	397.76
WTD(m)	2.3


Low depression A2: Molality HCO3- =6.53E-03 High elevation H7: Molality HCO3- =3.46E-03

 Dominant anion is HCO3- for all wells related with pH


Example output: Spatial distribution of water facies in WT and roles on soil

A2	
Species	SI
Anhydrite	-1.84
Aragonite	1.19
Calcite	1.33
CH4(g)	-74.96
CO2(g)	-2.67
Dolomite	2.49
Gypsum	-1.62
H2(g)	-24.52
H2O(g)	-1.51
Halite	-7.35
Hydroxyapatite	4.51
NH3(g)	-7.88
O2(g)	-1.58
	Anhydrite Aragonite Calcite CH4(g) CO2(g) Dolomite Gypsum H2(g) H2O(g) Halite Hydroxyapatite NH3(g)

H7		
Phase	SI	
Anhydrite	-1.5	5
Aragonite	0.19)
Calcite	0.33	3
CH4(g)	-67.9)
CO2(g)	-2.13	3
Dolomite	0.54	ļ
Gypsum	-1.28	}
H2(g)	-22.89)
H2O(g)	-1.51	
Halite	-8.49)
Hydroxyapatite	-1.88	3
NH3(g)	-8.61	
O2(g)	-1.03	3

- Calcite, dolomite, and aragonite hydroxyapatite are supersaturated which provide Ca, CO3 for major CaHCO3 type in this location
- Cations (Ca and Na, HCO3) in WT capillary rise to horizon of soil, and demonstrate why the stirum Letcher have Bk and Btn horizon
- Result in a higher ECa in A2 (3.47) than H7 (0.85) in topographic low areas with shallow GWT to surface

Water quality under different soil series?

Well#	рН	pe	Specific conductance	I
	X		uS/cm	
B3	8.081	4	1395	1.93E-02
B4	8.009	4	750	1.17E-02
B5	8.1	4	890	1.36E-02
Mix	8.042	12.43	1010	1.48E-02

Well#	pН	pe	conductance	1
	1		uS/cm	
A 7	8.094	4	1214	1.82E-02
A8	8.023	4	1561	2.08E-02
B8	4.428	4	1022	1.43E-02
Mix	6.648	13.89	1269	1.79E-02

				V/////////////////////////////////////		
B3 Phase	SI	B4 Phase	SI	B5 Phase	SI	MIX Phase SI
Anhydrite	-1.52	Anhydrite	-1.9	Anhydrite	-1.8	Anhydrite -1.69
Aragonite	0.93	Aragonite	0.87	Aragonite	0.95	Aragonite 0.9
Calcite	1.08	Calcite	1.02	Calcite	1.1	Calcite 1.04
CH4(g)	-73.3	CH4(g)	-72.7	CH4(g)	-73.5	CH4(g) -140.4
CO2(g)	-2.4	CO2(g)	-2.45	CO2(g)	-2.5	CO2(g) -2.42
Dolomite	2.05	Dolomite	1.93	Dolomite	2.22 <	Dolomite 2.03
Gypsum	-1.3	Gypsum	-1.68	Gypsu	min	orale are cu
H2(g)	-24.2	H2(g)	-24	H2(g)		erals are su

-1.51 H2O(g

-8.08 Halite

-8.23 O2(g)

NH3(g

Sulfur

-106.3

ŀ	A7 Phase	SI	A8 Phase	SI	B8 Phase	SI	Mix Phase	SI	
ı	Anhydrite	-1.64	Anhydrite	-1.79	Anhydrite	-5.77	Anhydrite	-1.88	١
ľ	Aragonite	1.18	Aragonite	1.06	Aragonite	-4.39	Aragonite	-0.43	
ŀ	Calcite	1.32	Calcite	1.2	Calcite	-4.25	Calcite	-0.29	
ı	CH4(g)	-73.38	CH4(g)	-72.74	CH4(g)	-42.29	CH4(g)	-139.61	
ľ	CO2(g)	-2.41	CO2(g)	-2.34	CO2(g)	-0.64	CO2(g)	-1.12	
	Dolomite	2.56	Dolomite	2.29	Dolomite	-8.42	Dolomite	-0.62	
	Gypsum	-1.42	Gypsum	-1.57	Gypsum	-5.55	Gypsum	-1.66	
`	ereatu	rated	Lin Stir	rım v	الد عا	16.86	H2(g)	-41.07	

3 minerals are supersaturated in undersaturated in Lethcer; different soil may result in different water properties High N in groundwater from fertilization runoff or infiltration into GWT > normal GW O2(q)-1.3

10.00	12(y)	- 4 1.07	
1.51	H2O(g)	-1.51	
7.23	H2S(g)	-139.42	
11.67	Halite	-7.1	
1.03	N2(g)	-13.29	
	NH3(g)	-65.35	
	O2(g)	-1.05	
	Sulfur	-104.23	\

B3,4 &B5---Stirum

-1.34

-1.51 H2O(g)

-6.73 Halite

-1.51 NH3(g)

-8.13 Hydroxyap: 1.4

O2(g)

H2O(g)

Halite

NH3(g)

O2(g)

A7, 8,&B8---Letcher

Conclusions

- PHREEQC provides further information about the relationship between soil and shallow ground water relationship with topography
- Errors from unfamiliar with PHREEQC, irrigation water would change when going through soil and meeting with shallow groundwater (mix function is not accurate in some case)