Mineralogy Exam 2 | Name | | | | |------|--|--|--| | | | | | 2009 **NDSU Dept of Geosciences** | 1. Matching: (2 points each; only on | ne answer is necessary) | [14 pts] | |--|---|-------------| | polymorphs | A. example of a reconstructive phase transition | | | 3-coordinated | B. CO ₃ ² - | | | van der Waals | C. identical chemistry, but different crystal structu | res | | diamond —> graphite | D. halite structure group | | | sanidine —> microcline | E. example of an order-disorder phase transition | | | galena | F. a type of weak dipole bonding | | | 6-coordinated | G. octahedral coordination | | | 2. Short answer: (3 points each)a. In our textbook, a mineralb. What is electronegativity? | is named and classified mainly by what criteria? | [15 pts] | | c. For elements in the same of as the atomic number (Z) | column of the periodic table, the ionic radii) increases. | | | | m of SiO_2 is cooled (at 1 atm) below 573°C, it instands that of low quartz. This is an example of what kinds | | | e. Describe why in a typical the target. | filament X-ray tube, both $K\alpha$ and $K\beta$ X-rays are pro- | oduced from | 3. Draw a projection looking down the 001 direction onto the base of the sphalerite structure. Indicate the identity of the atoms and their locations using fractional coordinates. [6 pts] 4. For the following figure, name the distance B-E______. What is the difference in path length between A-B-C, compared to D-E-F? ______. Does this geometry satisfy the Bragg equation? _____. [15 pts] 5. Ilmenite (FeTiO₃) can be processed to produce TiO₂ for paint pigments. [20 pts] - a. What is the weight % TiO_2 in ilmenite? FW $TiO_2 = 79.90$; FeO = 71.85 - b. Titanium metal is also a product that can be recovered. What is the weight % Ti in ilmenite? FW of Oxygen = 16.00 | • | olice detective asks you to identify a red powder that has been recovered from a susp hicle. You decide to carry out an XRD analysis. | ect's
[30 pts] | |----|--|-------------------| | a. | Describe a typical glass slide preparation for XRD analysis. | | | | | | | | | | | | | | | | | | | b. | What information do you gain from a powder XRD analysis? What data are output, what steps do you carry out to process the data and to identify the material? | and | - c. You suspect the material is the mineral litharge. The PDF card is reproduced below. - What is the crystal system of litharge? - What is its point group? _____ - What is the volume of the unit cell? _____ - You measure a moderate peak at $2\theta = 48.593^{\circ}$. Calculate the d of this peak using Bragg's Law (show all work). What peak (hkl) do you suspect this to be? ## 5-561 | PbO | d Å | Int | hkl | d Å | Int | hkl | |--|-----------------|---------|------------|--------|-----|-----| | | 5.018 | 5 | 001 | 0.9365 | 3 | 330 | | Lead Oxide Litharge, syn | 3.115 | 100 | 101 | 0.9200 | 3 | 323 | | | 2.809 | 62 | 110 | | | | | Rad. $CuK\alpha_1$ λ 1.5405 Filter Ni d-sp | 2.510
2.124 | 18 | 002
102 | | | | | Cut off Int. Diffractometer I/I _{cor} . | 1.988 | 8 | 200 | | | | | Ref. Swanson, Fuyat, Natl. Bur. Stand. (U.S.), Circ. 539, II 30 | | 37 | 112 | | | | | (1953) | 1.872
1.675 | 24 | 211 | | | | | Sys. Tetragonal S.G. P4/nmm (129) | 1.558 | 6 | 202 | | | | | a 3.9729 b c 5.0217 A C 1.2640 | 1.542 | 11 | 103 | | | | | α β γ \mathbf{Z} 2 \mathbf{mp} $\mathbf{Ref.}$ Ibid. | 1.438 | 2 | 113 | | | | | Rei. 101d. | 1.405 | 5 | 220 | | | | | D_x 9.35 D_m SS/FOM $F_{27} = 25.9(0.023,46)$ | -1.282 | 2 | 301 | | | | | A III 2/ | 1.256
1.226 | 3 4 | 310
222 | | | | | $\epsilon \alpha$ $n \omega \beta$ 2.665 $\epsilon \gamma$ 2.535 Sign 2V Ref. Ibid. | l | | | | | | | | 1.219
1.1977 | 5
<1 | 311
104 | | | | | Color Red | 1.1462 | 2 | 114 | | | | | X-ray pattern at 27 C. Sample from National Lead Company. Spectroscopic analysis: <0.01% Bi, Cu, Fe, Si; <0.001% Ca, Mg. Crystal system refined in 1975. Polymorph: massicot (tetragonal). Merck Index. 8th Ed., p. 613. Romarchite. PSC: tP4. | | 2 | 312 | | | | | | | 3 | 321 | | | | | | | 2 | 204 | | | | | • | 1.0386 | <1 | 303 | | | | | | 1.0254 | <1 | 214 | | | | | | 0.9738 | 1 | 105 | | | | | | 0.9462 | 1 | 411 | | | |