Mineralogy Exam 2 2015

Name			
		_	

NDSU Dept of Geosciences

1. Match the best answer: (2 poin	ts each; only one answer is necessary)	[9 pts]
metamict	A. example of omission solid solution	
6-coordinated	B. has the outward crystal form of a different miner	ral
pseudomorph	C. X-ray amorphous	
forsterite-fayalite	D. octahedral coordination	
ABABABAB	E. isostructural with hematite	
corundum	F. complete substitutional solid solution series	
pyrrhotite, Fe _(1-x) S	G. CO ₃ ²⁻	
3-coordinated	H. cubic closest packing	
ABCABCABC	I. hexagonal closest packing	
2. Short answer: (3 points each)a. CIRCLE the correct answer: La more strongly / more loosely	arge atoms hold their outer valence electrons than do smaller atoms.	[15 pts]
b. Halite (NaCl) has a	desmic bonding scheme. The Na+ ions have coordination.	
c. We would expect NaF to be so	fter than MgO because:	
d. 3. Why is graphite so soft (H =	1-2), yet also has such a high melting point (approx. 36	550 °C)?
e. What is the valence of iron in h	nematite (Fe ₂ O ₃)? What is the valence of pure metallic in	ron?

3. The water content of record can be determined by heating the sample and meas	8 8
loss. Write a balanced chemical formula for the decomposition of FeOOH into o all iron is as Fe ⁺³ . What would be the percent weight loss?	xides, assuming
Atomic weights: $Fe = 55.85$; $O = 16.00$; $H = 1.01$	[15 pts]
4. Someone brings in a sample with metallic luster for identification. You identify it as galena based on the following observed characteristics:	[15 pts]
Crystallography (crystal system and point group)	
Typical habit / cleavage	
Hardness / Specific Gravity	
Just to be sure, you analyze the sample using SEM-EDS. What information about	the sample do

Just to be sure, you analyze the sample using SEM-EDS. What information about the sample do you expect to learn from that instrument? How does the technique work (what are the inputs and outputs; draw a schematic diagram).

What are the Coordination Nun	iber and name of coo	rdination poly	nedron for:	[12 pts]
Ca ⁺² and F ⁻ in fluorite Ca ⁺² CN name		• ca+2		7
F CN name				>
S ²⁻ (A) and an empty position	(B) in sphalerite	d		
S ²⁻ CN name			Fluorite structure	
(empty) CN name What are the chemical formula and sphalerite?		© Zn ²⁺	A	
			Sphalerite structure	
6. For the following compatibili				[16 pts]
point A?	point B?	P	oint C?	
What are the chemical form	ulae for			
po	_ py	cp		
Why is po represented by an	S (liquid	bn + cp + po bn + po + Fe	po Fe	
	weight 9	%		

Phase relations in the copper-iron-sulfur system at 700° C (1290° F). Gray areas are 2-phase regions. The bornite and chalcopyrite phases are stable over considerable composition ranges. Vapor coexists with all phases and phase assemblages. Abbreviations are bn, bornite; cp, chalcopyrite; po, pyrrhotite; py, pyrite; S_L , liquid sulfur. (*After R. A. Yund and G. Kullerud, Thermal stability of assemblages in the Cu-Fe-S system, J. Petrol.*, 7:454-488, 1966)

7. You find a white powder seemingly growing on the concrete in your basement. You decide to carry out an XRD analysis, and find a match with calcite (info below). [18 pts]

5-586	1 1	Total	LL.	d Å	Int	hkl
CaCO ₃	d Å	Int	hkl	a A	Int	nki
	3.86	12	012	1.1538	3	134
Calcium Carbonate Calcite, syn	3.035	100	104	1.1425	1	226
	2.845	3	006	1.1244	<1	1211
Rad. CuKα ₁ λ 1.5405 Filter Ni d-sp	2.495	14	110	1.0613	1	2014
Cut off Int. Diffractometer I/I _{cor.} 2.00	2.285	18	113	1.0473	3	404
Ref. Swanson, Fuyat, Natl. Bur. Stand. (U.S.), Circ. 539, II 51	2.095	18	202	1.0447	4	318
(1953)	1.927	5	024	1.0352	2	1016
	1.913	17	018	1.0234	<1	2113
Sys. Rhombohedral (Hex) S.G. R3c (167) a 4 989 b c 17.062 A C 3.4199	1.875	17	116	1.0118	2	3012
u 11505	1.626	4	211 .	0.9895	<1	321
α β γ Z 6 mp Ref. Ibid.	1.604	8	122	0.9846	1	232
Rei. 10id.	1.587	2	1010	0.9782	1	[13 <u>10</u>]
D_x 2.71 D_m 2.71 SS/FOM $F_{30} = 49.9(.0163,37)$	1.525	5	214	0.9767	3 2	1214
A M	1.518	4 3	208	0.9655	4	324 408*
εα 1.487 πωβ 1.659 εγ Sign – 2V	1.510 1.473	-	119	0.9636		
Ref. Dana's System of Mineralogy, 7th Ed., 2 142		2	125	0.9562	<1	2016*
Color Colorless	1.440	-5	300	0.9429	2 2	410
X-ray pattern at 26 C. Sample from Mallinckrodt Chemical Works.	1.422	3	00 <u>12</u> 217	0.9376	2	22 <u>12</u>
Spectroscopic analysis: <0.1% Sr; <0.01% Ba; <0.001% Al, B, Cs,	1.356 1.339	1 2	0210	l		
Cu, K, Mg, Na, Si, Sn; <0.0001% Ag, Cr, Fe, Li, Mn. Merck Index,	1.297	_	_			
8th Ed., p. 190. Other form: aragonite. Calcite group, calcite sub-		2	128	1		
group.	1.284	1	306 220			
*Not permitted by space group.	1.247 1.235	1 2	1112			
PSC: hR10.	1.1795	3	2110	l		
	1.1/93	1 3	2110	I		l

- What is the crystal system of calcite, <u>using our textbook's nomenclature</u>?
- You measure a moderate peak at $2\theta = 48.504^{\circ}$. Calculate the d of this peak using Bragg's Law (show all work). What peak (hkl) do you suspect this to be?
- Show how to calculate the c-axis length from the 0 0 6 and 0 0 12 peaks.