Analysis of An Unknown Brazil Rock Sample By Alero Ajogri & David Lukudu 01 May 2012 NDSU Petrology 422

OVERVIEW

- * Method
- Hand sample
- X Ray Diffraction
- X Ray Refraction
- SEM
- * Result
- * Conclusion
- * Reference

UNKNOWN ROCK SERVING AS DINING TABLE

Methods:

Hand sample description

Altered Colors in the Unkown

- Brown
- Green
- Blue

Grain size- Fine grained

Specific Gravity: 2.9

Hardness: 8 - 9 Scratches glass very easily.

X-RAY DIFFRACTION

× PREPARATION

- Crushed sample
- Separate Phenocryst
- Powdered
- Run the XRD
- Rate minerals

RESULT OF XRF AND AVERAGE ANALYSIS OF THE UNKNOWN ROCK

×	Sampl	e

× SiO₂ (%)

 \times Al₂O₃ (%)

 \times Fe₂O₃ (%)

* CaO (%)

MgO (%)

× MnO (%)

× Na₂O (%)

× K₂O (%)

 $\times P_2O_5$ (%)

× TiO₂ (%)

BRAZIL

65.218

16.316

0.206

0.074

0.007

0.02

1.306

1.044

0.004

0.77

Thin Sections

Scale 5mm

Scale 5mm

Minerals found in thin section

- 1. Quartz
- 2. Garnet
- 3. Pyroxene
- 4. Albite
- 5. Glaucophane

X RAY DIFFRATION

Minerals found in X Rray diffraction

- Kyanite
- 2. Omphacite
- 3. Glaucophane
- 4. Quartz
- 5. Paragonite

X-Pert High Score

X RAY DIFFRACTION WITH PARAGONITE

X-Pert High Score

CHEMISTRY OF KYANITE

- Chemical formula
 Kyanite Al₂SiO₅
- Stable at high pressure zone.

CHEMISTRY OF QUARTZ

- ★ Chemical formula SiO₂
- × Hardness of 7
- Specific density 2.65

CHEMISTRY OF OMPHACITE

- Chemical formula (Ca,Na)(Mg, Al) Si₂O₆
- Hardness of 6-7
- * Monoclinic
- Major component of Eclogite
- On a high temperature and pressure zone in the P-T diagram

CHEMISTRY OF PARAGONITE

- Chemical formula NaAl₂ [(OH)₂ Al Si₃O₁₀
- Most commonly in metamorphosed rocks under blueshist facies

CHEMISTRY OF GLAUCOPHANE

- Chemical formula Na₂(Fe, Mg)₃ Al2Si₈O₂₂(OH)₂
- × Hardness 5-6
- Specific gravity 3-3.2
- Metamorphic. That is low temperature and high pressure

WHICH ROCKS ARE UNDER HIGH TEMPERATURE AND PRESSURE

1. Blueschist

2. Eclogite.

Winter 25.2

MINERALS IN METAMORPHIC ROCKS

Table 25-1. Definitive Mineral Assemblages of Metamorphic Facie			
Facies	Definitive Mineral Assemblage in Mafic Ro		
Zeolite	zeolites: especially laumontite, wairakite, analcime		
Prehnite-Pumpellyite	prehnite + pumpellyite (+ chlorite + albite)		
Greenschist	chlorite + albite + epidote (or zoisite) + quartz ± ad		
Amphibolite	hornblende + plagioclase (oligoclase-andesine) ±		
Granulite	orthopyroxene (+ clinopyrixene + plagioclase ± ga hornblende)		
Blueschist	glaucophane + lawsonite or epidote (+albite ± chlo		
Eclogite	pyrope garnet + omphacitic pyroxene (± kyanite)		
Contact Facies	Mineral assemblages in mafic rocks of the facies of contact morphism do not differ substantially from that of the corresp regional facies at higher pressure.		
After Spear (1993)			

Winter Table 25.1

Facies of high pressure

- The blueschist and eclogite facies: low molar volume phases under conditions of high pressure
 - Blueschist facies- areas of low T/P gradients: subduction zones
- Eclogites: stable under normal geothermal conditions

Deep crustal chambers or dikes, sub-crustal magmatic underplates, subducted crust that is redistributed into the mantle

METAMORPHIC FACIES

Winter figure 25.4

BLUESCHIST

ECLOGITE

TRANSITION FROM BLUESCHIST TO ECLOGITE

Winter figure 25.11 and 25.12

ACF DIAGRAM OF MINERAL ASSEMBLAGE IN ECLOGITE

Winter figure 25.12

CARBON COATING MACHINE

SEM SHOWING KYANITE

SEM SHOWING RUTILE COMPOUNDS

SEM WITH ZIRCON AND SCANDIUM

FORMATION OF CONTINENTS

Winter figure 25.13

CONCLUSION

- With the work done on the unknown sample, using X Ray diffraction, XRF, SEM to know the mineral content.
- Also using the P/T diagram to know what zone it could be found.
- * We assume that the unknown rock is Eclogite.

REFERENCES CITED

- Cornelis Klein and Barbara Dutrow 23rd Edition Mineral Science
- ★ John D. Winter Principle of Igneous and Metamorphic Petrology 2nd Edition p 537-555

THANKS FOR LISTENING AND GOODLUCK ON YOUR FINALS