MINERALOGY OF THE TECK-COMINCO RED DOG MINE DEPOSIT

By Nick Hugo
Petrology
North Dakota State University
May 1, 2014

The Teck-Cominco Red Dog Mine

 Located in Northwestern Alaska near Kotzebue (Southwestern portion of the Brooks Range)

- One of the largest Zinc and Lead producers in the world
- Open-Pit Lead and Zinc Sulfide Mine

(Chance, n.d.) (Air Quality, 2011) (Red Dog Operations, 2009)

Regional Geology

FIG. 3. Allochthon distribution map for a portion of the De Long Mountains.

- The Western Brooks Range area is divided into eight allochthons
 - Grouping of sequences that were moved by orogenic events
 - Range from the Paleozoic to Mesozoic in age
 - Each allochthon is divided into several sequences
- All were thrust northward during an orogeny that occured in the middle Jurassic
 - Red Dog Sequence is located in the Brooks Range Allochthon

Ore Geology

- The deposit is located in the Kuna Formation
- Host rock is primarily composed of chert, shale, quartz exhalite, tuff, tuffaceous sandstone, keratophyre (alkalai feldspar phenocrysts in fine grained alkalai feldpar matrix), and andesite
- Mississipian to Pennsylvanian in age

Ore Geology

Deposited in a quiet, deep-water, marine environment

Research Questions

- What is the depositional story of this deposit?
 - What is the observed mineral assemblage?
 - What was the process of crystallization (hydrothermal, igneous, etc.)?

Methods of Research

- **■** Incident (Reflected) Light Microscopy
 - Sample Preparation
 - Mineral Identification
- Scanning Electron Microscopy (SEM) Analysis
 - Mineral Identification
 - Mineral Chemistry

Reflected Light Microscopy -Background

- Light is emitted from a singular source and is focused on the sample surface
 - Can be equipped with a glass plate reflector or with a half field prism
- Light is then reflected upwards (from the sample) towards the ocular piece

Reflected Light Microscopy - Sample Preparation

- □ Cut hand sample to approximate thin section length and width (for this sample 1.75cm wide by 2.5cm long)
- Grind sample starting with 400 grit on a glass plate and continue to finer grades (600grit, 1000grit)
- Polish sample using 1micrometer grit continuing to finer grades (0.25 micrometer grit and ending at 0.05 micrometer grit)

Reflected Light Microscopy – Mineral Identification

- Color of reflection
- Hardness
- Presence of internal reflections
- Pleochroism
- Anisotropy

Results - Reflected Light Microscopy

Reflected Light Image Vs. SEM Image

Results - SEM Analysis

- There is a relationship between zinc and iron in Sphalerite for percentage substitution
- Can be used to identify type of Sphalerite

- Point 2 = Quartz (SiO_2)
 - Distinctive Si and O peaks
- The carbon peaks are most likely residue left form polishing

(Kelley et. al., 2004)

Results - SEM Analysis

- - Determined through observation of distinctive characteristics using reflected light microscopy

- \blacksquare Point 2 = Galena (PbS)
 - Same as Point 6

Results - SEM Analysis

- Point 5 = Example of what not to do
- Interaction between three separate minerals
- Make sure of accurate point placement before running the analysis

Conclusions

- What is the depositional story of this deposit?
 - What is the observed mineral assemblage?
 - Quartz, Pyrite, Sphalerite, and Galena
 - What was the process of crystallization (hydrothermal, igneous, etc.)?
 - Based on literature research this deposit was hydrothermally deposited
 - Sea-floor derived fluid creates vents within the formation causing deposition of deposit minerals
 - All the minerals observed can be deposited in hydrothermal environments

QUESTIONS?

References

- Air Quality Red Dog Mine Information. (2011). *Air Quality Red Dog Mine Information*. Retrieved April 15, 2014, from http://dec.alaska.gov/air/reddog.htm
- Chance, N. (n.d.). Contamination at Red Dog Mine, Alaska. *Contamination at Red Dog Mine, Alaska*. Retrieved April 15, 2014, from http://arcticcircle.uconn.edu/SEEJ/RedDog/
- © Craig, J. R., & Vaughan, D. J. (1981). *Ore microscopy and ore petrography*. New York: John Wiley and Sons. Print.
- Edgerton, D. (1997). Reconstruction of the Red Dog Zn–Pb–Ba orebody, Alaska: implications for the vent environment during the mineralizing event. *Canadian Journal of Earth Sciences*, 34, 1581-1602. Print.
- Kelley, K., Leach, D., Johnson, C., Clark, J., Fayek, M., Slack, J., et al. Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation. *Economic Geology*, 99, 1509-1532. Print.
- Lange, I., Nokleberg, W., Plahuta, J., Krouse, H., & Doe, B. Geologic setting, petrology, and geochemistry of stratiform sphalerite-galena-barite deposits, Red Dog Creek and Drenchwater Creek areas, northwestern Brooks Range, Alaska. *Economic Geology*, 80, 1896-1926. Print.
- Moore, D., Young, L., Modene, J., & Plahuta, J. Geologic setting and genesis of the Red Dog zinc-lead-silver deposit, western Brooks Range, Alaska. *Economic Geology*, 81, 1696-1727. Print.
- Morelli, R., Creaser, R., Selby, D., Kelley, K., Leach, D., & King, A. Re-Os Sulfide Geochronology of the Red Dog Sediment-Hosted Zn-Pb-Ag Deposit, Brooks Range, Alaska. *Economic Geology*, 99, 1569-1576. Print.
- □ Pracejus, B. (2008). *The ore minerals under the microscope an optical guide*. Amsterdam: Elsevier. Print.
- Red Dog Operations. (2009). Retrieved April 15, 2014, from http://www.reddogalaska.com/http://www.reddogalaska.com/Generic.aspx?PAGE=Red+Dog+Site%2fAbout+Red+Dog&portalName=tc