Comparison of Cha Buttes Porphyry a Porphyry Near Forsy

By: Monty Johnson and Eric Wilcox

NDSU Petrology Geol 422 May 6, 2014

Outline

- Introduction
 - -Chalky Buttes Member
 - -Forsyth Cobble
- Backround
 - Prior research
- Methods
 - -XRF, SEM, Microscopy
- Results
- Conclusion

Introduction

From: google maps

Introduction to Chalky Buttes Fm.

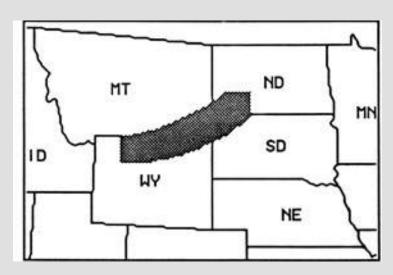
- Part of the Chadron Formation
- In the White River Group
- Late Eocene in Age
- Consists of many cobbles including quartzite, sandstone, mudstones, petrified wood, and volcanic porphyry
- Cobbles were deposited by fluvial forces

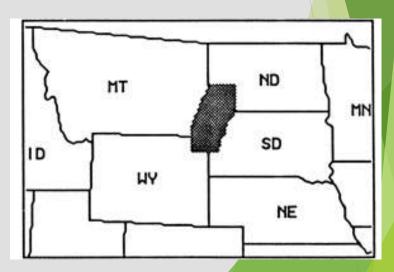
Introduction to Chalky Buttes Formation

NORTH DAKOTA STRATIGRAPHIC COLUMN

by Edward C. Murphy, Stephan H. Nordeng, Bruce J. Juenker, and John W. Hoganson

E OF YEARS RESENT	HEM	SY		STEM	SNCE	ROCK UNIT				ROCK COLUMN	MAXIMUM THICKNESS																		
AGE MILLIONS OF YEARS BEFORE PRESENT	ERATHEM			SERIES	SEQUENCE	GROUP	FORMATION	MEMBER	RESOURCE Proven Potential	EXPOSED UNITS SHOWN WITH IRREGULAR, ERODED RIGHT-HAND MARGIN	FEET (METERS)																		
-0.01-				Holocene			ОАНЕ	RIVERDALE PICK CITY AGGIE BROWN MALLARD ISLAND	Salt Water Gravel		100 (30)																		
0.01		VOLVATOR	QUALERIARIA	Pleistocene	TEJAS	WEST CENTRAL EASTERN RED RIVER VALLEY SHERACK SHERNA FALGORE HUOT ARGUSVILLE CAMP GARFON CAMP GARFON CAMP GARFON CAMP GARFON CAMP GARFON CANDO MARCOUX			Gravel Water Stone Peat Clay		1,000 (300)																		
-2.6-		П	NEOGENE	Pliocene	TE		(Unnamed Unit)		Gravel Water		300 (91)																		
-5.3-		Nic Mic	Miocene			ARIKAREE		Rock		330 (101)																			
-23.0 -	C		Oligocene			WHITE RIVER	BRULE			- MANUAL TO A STATE OF THE STAT	200 (61)																		
- 33.9 -																								WHITE RIVER	CHADRON	SOUTH HEART CHALKY BUTTES	Clay Gravel		140 (43)
-55.8-	CENOZO			Eocene			GOLDEN VALLEY	CAMELS BUTTE BEAR DEN	Clay		400 (122)																		
	CEL	TERTIARY	TERTIARY	TERTIARY	TERTIARY	TERTIARY	TERTIARY	TERTIARY	TERTIARY	TERTIARY	PALEOGENE	PALEOGENE	PALEOGENE	PALEOGENE	PALEOGENE				SENTINEL BUTTE	BEAK DEN	Clinker Uranium Coal Leonard- ite Water	aiomicu aiomicu	650 (198)						
				PALEC	PALEC	PALEC	PALEC	PALEC	PALEC	PALEC						PALEC	Paleocene		FORT UNION	BULLION CREEK		Water Stone Coal Clinker	HWINGE OF WINGE	650 (198)					
													SLOPE		Clay Coal Clinker	/Monthernary//Monthernary	270 (82)												
							CANNONBALL		Clay		255 (78)																		
65.5							LUDLOW		Water Clinker Coal	AND THE CHOO MONTHER	300 (91)																		


From: nd.gov


Introduction to the Forsyth Cobble

- Found in the Yellowstone River by NDSU Alumnus Levi Moxness
- ► Have been labeled as Flaxville Cobbles, although they are not in the Flaxville Formation, located in Northeastern Montana (Leckie, D. 2006).
- Source of the Cobbles in the Yellowstone River is believed to be the Absaroka Mountains

Background

- Source of the Chalky Buttes cobbles is unknown
- ► Two main hypotheses are debated
 - Transport from the Absaroka-Beartooth region of Wyoming and Montana
 - Transport from the northern Black Hills

Photos from: Clausen, 1986

What do We Want to Know?

- We want to determine if the cobbles have a similar composition
- If the cobbles are similar it is possible they could be from the same source

Methods

- Microscopy
 - Cut samples, high precision saw, made thin sections, sanded them down to proper thickness (30 microns)
- XRF
 - Crushed samples, made them into powder, constructed pellets
- ► SEM
 - ► Cut samples, polished, then carbon coated them

Microscopy

- Samples appeared similar
- Both contained K-spar phenocrysts, and many smaller grains surrounding them
- Phenocrysts indicate a period of slow cooling then finished cooling quickly, indicated by the smaller grains
- Some Plagioclase is also present, but the grains are primarily K-spar

Microscopy Yellowstone River

Scale: 1.3 mm

Phenocryst

Smaller **Grains**

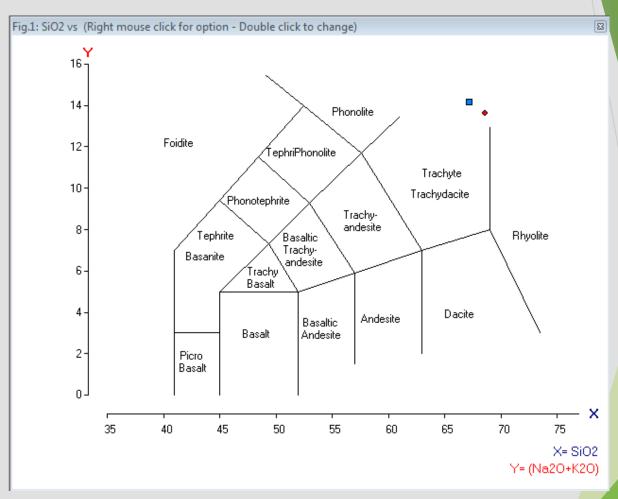
Chalky Buttes

Phenocryst

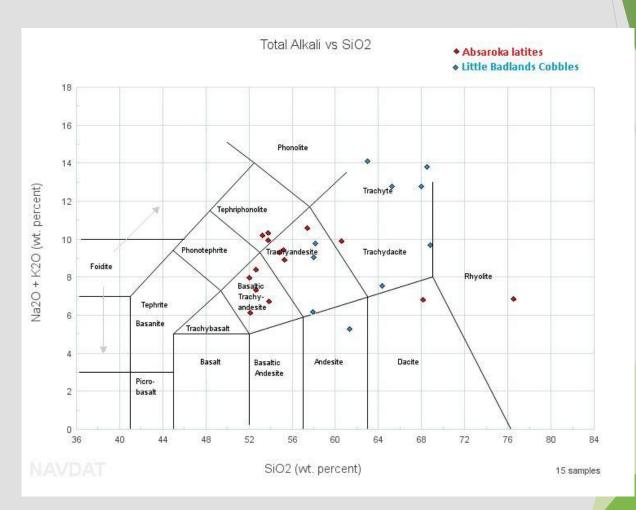
Methods in Action

XRF Data

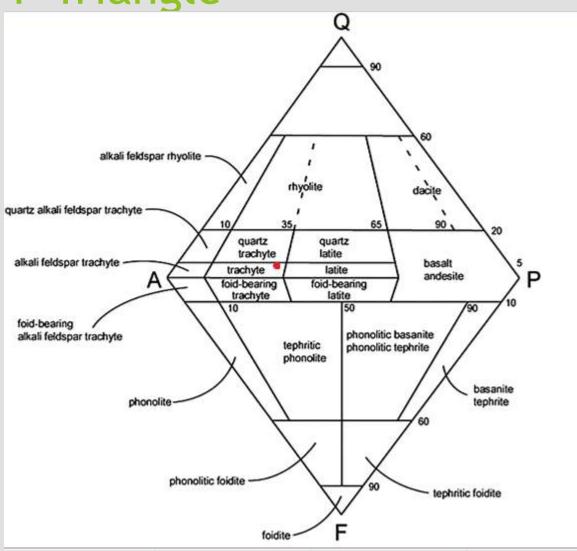
Conducted XRF analysis on two similar looking porphyries from the Chalky Buttes Member and one belonging to the "Forsyth Cobble" found in the Yellowstone River


XRF Results

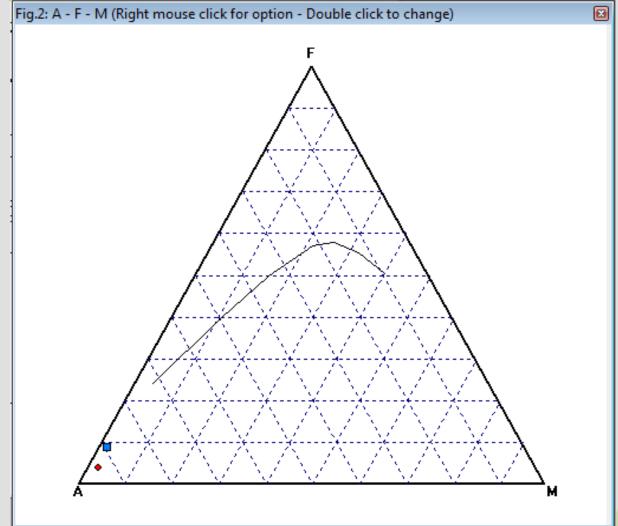
Formula	AA-84-CB	Stat. erro	LLD = lower limit of detection	Formula	LM-12060	Stat. erro	LLD
SiO2	68.43%	0.05%	152.3 PPM	SiO2	67.01%	0.05%	147.3 PPM
Al2O3	15.72%	0.18%	407.7 PPM	Al2O3	15.46%	0.19%	384.8 PPM
Fe2O3	0.49%	0.20%	10.8 PPM	Fe2O3	1.31%	0.13%	13.4 PPM
CaO	1.03%	0.54%	205.2 PPM	CaO	1.32%	0.52%	216.3 PPM
MgO	0.33%	1.32%	379.8 PPM	MgO	0.23%	1.38%	358.3 PPM
MnO	0.02%		8.6 PPM	MnO	0.09%	0.72%	10.2 PPM
Na2O	1.60%	2.49%	627.0 PPM	Na2O	1.82%	2.25%	599.4 PPM
K2O	11.97%	0.18%	234.5 PPM	K2O	12.30%	0.19%	234.6 PPM
P2O5	0.01%		67.2 PPM	P2O5	0.02%		65.6 PPM
TiO2	0.11%		39.7 PPM	TiO2	0.16%		42.6 PPM
	99.71%				99.70%		


From: Webmineral.com

TAS Diagram

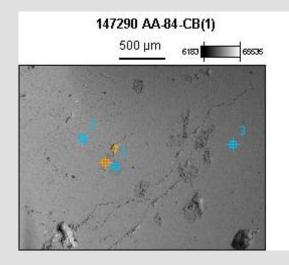

Red- Chalky Buttes Blue- Forsyth

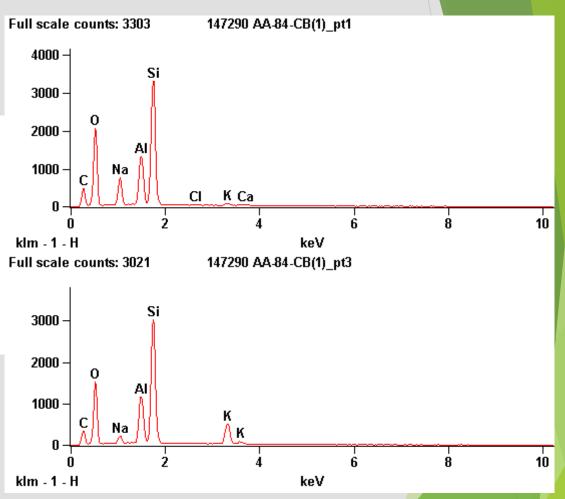
Data From Previous Research



Taken from: Moxness, Levi, 2012

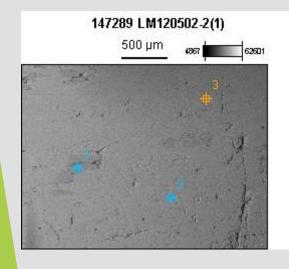
QAPF Triangle

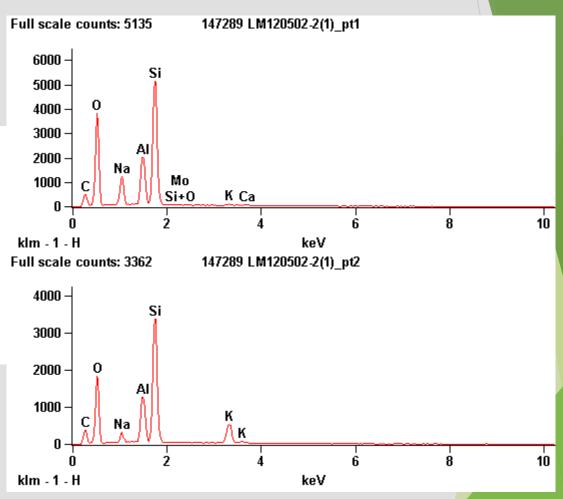

AFM Diagram



Red- Chalky Buttes Blue- Forsyth

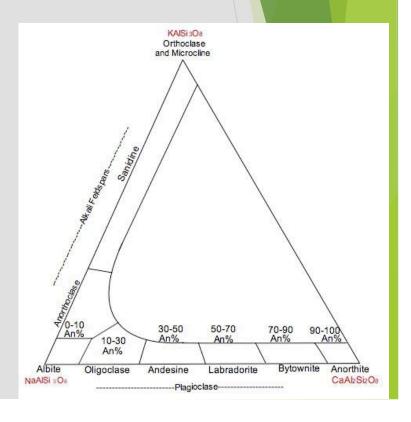
SEM Results (AA-84-CB)


(Chalky Buttes)



SEM Results (LM-120602-2)

(Yellowstone River)


SEM Results Comparison

	Basis of 8 Oxygens											
	Si	2.90	2.99	2.97	2.90	3.02	2.97	4.00	2.75	2.50	2.98	2.36
	Al	1.03	0.99	1.04	1.04	0.95	1.01	0.00	1.53	1.85	1.01	2.07
	MgO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.04	0.00	0.02
	Fe2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00
Totals		3.93	3.99	4.00	3.94	3.97	3.98	4.00	4.57	4.40	3.99	4.46
	Na	1.11	0.34	0.32	1.07	0.00	0.38	0.00	0.00	0.00	0.40	0.06
	K	0.07	0.70	0.70	0.07	1.06	0.71	0.00	0.25	0.44	0.66	0.28
	Ca	0.07	0.00	0.00	0.06	0.00	0.00	0.00	0.08	0.00	0.00	0.00
Totals		1.24	1.04	1.02	1.21	1.06	1.09	0.00	0.33	0.44	1.07	0.34
Monty												

Basis of 8 Oxygens						
Si	2.91	3.00	3.00	2.95	2.98	2.98
Al	1.02	0.99	0.97	1.01	0.99	0.99
Totals	3.94	3.98	3.98	3.96	3.97	3.98
Na	1.15	0.38	0.45	1.09	0.44	0.38
K	0.05	0.68	0.61	0.09	0.66	0.70
Ca	0.04	0.00	0.00	0.00	0.00	0.00
Totals	1.24	1.06	1.06	1.18	1.10	1.09
Wilcox						

SEM Results Comparison

- ▶ Both contained Alkali feldspar, most likely Sanidine
- Within the Sanidine there was also Albite
- Commonly form together

Results

- Microscopy, XRF, and SEM data are all quite similar
- Not perfect, but we would not expect them to be
- Could make the argument that they come from the same source

Conclusions

- ▶ It is possible they come from the same source material
- Can not say for sure
- ► The Yellowstone cobble could have simply been reworked by the Yellowstone River
- ▶ It does help to rule out the Black Hills as a source
- Further research needed

Further Research

- Age dating on the cobbles using Zircon crystals
- These are just two cobbles, need to compare many more

Sources

- ► Clausen, E. 1986. Origin of Quartz Latite Porphyry Cobbles found at base of White River Group Sediments in Southwestern North Dakota. NDGS 1986 Fieldtrip Guidebook. pp. 41-45.
- Leckie, D. A., 2006. Tertiary fluvial gravels and evolution of the Western Canadian Prairie Landscape. Elsevier, Amsterdam.
- Moxness, L. 2012. Provenance of cobbles from the Chalky Buttes Member of the Chadron Formation, southwestern North Dakota. (unpublished)
- ▶ Web Mineral. Sanidine Mineral Data. webmineral.com

