# Igneous and Metamorphic Rocks from Patagonia, Argentina

By Brian Kaeter and Darin Wilwand

NDSU Petrology

Geol 422

May 6, 2014

#### Introduction

- Geography of northern Patagonia
- Guiding question
- Tectonic setting
- Granites
- Shear Zones
- Mylonites
- Geologic relationship and background
- Conclusion



# Guiding Question

• How does composition of the granites and the pattern in the micro-structures of the mylonites relate to the formation of northern Patagonia?

# Determining Tectonic Setting from Granitoids

- Trace elements have long been used to determined tectonic settings of basalts
  - · Volcanic Arc
  - Within Plate
  - · Ocean Ridge
- Many times the only exposed products of a magmatic/ tectonic event are plutonic rocks, particularly granite
  - This is the case in the El Cuy region
- Two main reasons granites have received less attention than basalts as tectonic indicators:
  - Difficulty of sampling granites of known setting
  - Granites have a more complicated petrogenetic history than basalts

# Determining Tectonic Setting from Granitoids (Continued)

- Julian Pearce published a groundbreaking paper in 1984 describing empirical trace element relationships in granites to tectonic settings
  - Used an enormous data set from sites from all over the world representing all tectonic settings
  - Many papers since than have more or less confirmed his ideas and expanded upon his ideas
- Tectonic settings can now be estimated using Y (Yttrium) and Nb (Niobium) concentrations in granites in the same way that they were estimated in basalts

#### Experimental Methods

- Dr. Eidukat performed 20 XRF trials
  - Granites mylonites, and aplitic dikes
- Brian performed 4 XRF trials (3 samples that haven't been tested)
  - 1 was practice to learn how to make pellet, but was a mylonite
    - Not applicable but matches Dr. Eidukat's data
  - 1 was mistakenly read as a course grain granite when it was actually an aplitic dike
    - · Not applicable
    - · Due to conversion issues maps are a little off and hard to read
  - 1 fine grain granite
  - 1 foliated granite
- When these results are combined they represent trace elements of all El Cuy granite types

## Kaeter Granite Samples

BJK



## Kaeter Granite Sample



COR-14-BJK Fine Grained Granite

XRF Data

| Formula | COR-14-BJK |
|---------|------------|
| SiO2    | 76.84%     |
| Al2O3   | 13.71%     |
| Fe2O3   | 0.61%      |
| CaO     | 0.65%      |
| MgO     | 0.27%      |
| MnO     | 0.03%      |
| Na2O    | 3.46%      |
| K20     | 4.28%      |
| P2O5    | 0.00%      |
| TiO2    | 0.07%      |

| Sample         | Y PPM | Nb PPM |
|----------------|-------|--------|
| COR-14-<br>BJK | 25.0  | 15.0   |

## Kaeter Granite Sample



BR-1-BJK Foliated Granite

XRF Data

| Formula | BR1-BJK |  |
|---------|---------|--|
| SiO2    | 69.59%  |  |
| Al2O3   | 15.62%  |  |
| Fe2O3   | 1.69%   |  |
| CaO     | 1.94%   |  |
| MgO     | 0.83%   |  |
| MnO     | 0.05%   |  |
| Na2O    | 3.44%   |  |
| K2O     | 6.31%   |  |
| P2O5    | 0.06%   |  |
| TiO2    | 0.24%   |  |

| Sample  | Y PPM | Nb PPM |
|---------|-------|--------|
| BR1-BJK | 35.0  | 11.3   |

#### Eidukat Samples (Course Grained Granite)



# Kaeter and Saini-Eidukat Y and Nb Concentrations

| Sample     | Y PPM | Nb PPM | Granite Type           |
|------------|-------|--------|------------------------|
| COR-14-BJK |       |        |                        |
|            | 25.0  | 15.0   | Fine Grained Granite   |
| BR1-BJK    | 35.0  | 11.3   | Foliated Granite       |
|            |       |        |                        |
| QA1-SAN    | 6     | 8.0    | Course Grained Granite |
|            |       |        |                        |
| QA2-SAN    | 13    | 12.4   | Course Grained Granite |
|            |       |        |                        |
| QA3-SAN    | 52    | 32.0   | Course Grained Granite |
|            |       |        |                        |
| QA5-SAN    | 8     | 9.6    | Course Grained Granite |

# Kaeter Nb-Y Granitoid Discriminate Diagram (Pearce, 1984)



Almost all samples plot as Volcanic Arc Granites!

#### Shear Zones

• A high-strain zone with lateral displacement of wall rock segments with respect to each other

#### 2 Types of shear zones

- Brittle fault- lower temperature and pressure, fragments break in an angular fashion
  - This is typically known as a **fault**
- **Ductile zone** higher temperature and pressure, deformation occurs without the breaking of fragments but as bending and flowing



Surrounding rock is generally unaffected by shear zones.

# Shear Zones (Continued)



Depiction of the transition from brittle frictional breaking to ductile deformation.

Diagram showing the brittleplastic transition zone where ductile deformation begins with increased metamorphic conditions.



#### Mylonites

- Exclusively a structural term, no indication of mineralogy or composition
- Form in high-strain ductile shear zones
- Foliated and usually lineated rock that show a strong sense of deformation
- Small grain size compared to surrounding rock
- Presence of <u>porphyroclasts</u>, remnants of resistant mineral grains, are an indication of a mylonite



A porphyroclast of quartz surrounded by matrix

#### Classification of Mylonites

Mylonites are classified according to the metamorphic grade at which deformation took place or according to the lithotype or mineralogy in which they are developed.

- •Protomylonites- rocks composed of 10-50% matrix
- •Mylonites- rocks composed of 50-90% matrix
- •Ultramylonites- rocks composed of greater then 90% matrix
  - \* The higher matrix composition indicates a higher degree of metamorphism

# El Cuy, Patagonia

West



### Sample P-5



Objective: 10x FOV: 2 mm

- Protomylonite (10- 50% matrix)
- Strong asymmetrical folding indicating sinistral (leftlateral) shear direction.



#### Sample P-5A

- Ultramylonite (greater then 90% matrix)
- Presence of mica fish indicate sinistral movement

Mica fish







Objective: 10x FOV: 2mm

## Sample P-6



Objective: 10x FOV: 2mm

- Mylonite (50-90% matrix)
- Strong foliated texture
- Direction is not indicated

#### Porphyroclastic Augen

- Porphyroclasts can be used to determine whether a rock exhibits sinistral or dextral shear movement
- By looking at the recrystallized tails on the sides of the augen (eye) porphyroclasts,  $\sigma$  (sigma),  $\delta$  (delta), or  $\phi$  (phi) type deformation can be inferred



#### Sample P-18

- Granitic Augen-Mylonite
- Shear direction is indicated by the porphyroclast in center.
- Tails show  $\sigma$  (sigma) and  $\delta$  (delta) shear movement.
- Indicates sinistral movement

Objective: 10x FOV: 2mm

Augen (eye)

### Mylonite Summary

- Presence of mica fish, augen, and asymmetrical folding are an indication of sinistral (left-lateral) shear movement
- Generally, the deformation in the mylonite samples increases as they move west
- These micro features can be used to determine the nature of the formation of the landscape on a macro scale

# ➤ Geologic event causing compression coming from the east



#### Competing Hypotheses

#### Autochthony

- Patagonia is a native landmass that underwent intraplate deformation generated block movement
  - Resulted in the formation of mylonites due to regional shearing

\*Supported by tectonic granite trace element discrimination through XRF

#### Allochthony

 Patagonia is a foreign landmass that collided with continental Gondwana

#### Conclusion

- Results of XRF conclude that the El Cuy granite are Volcanic Arc in origin
- Mylonites are foliated rocks formed in ductile shear zones under metamorphic conditions
- The mylonite thin sections suggest a sinistral (left-lateral) shear stress direction
- The presence of both the mylonites and Volcanic Arc granites support the autochthony hypothesis

#### References

- Benedini, L., Gregori, D., Martinez, J., Saini-Eidukat, B., Kostadinoff, J., Alvarez, G., Block transcurrence and granite emplacement model during the Gondwanide orogeny in northern Patagonia, Argentina: (Unpublished)
- Gregori, D.A., Saini-Eidukat, B., Migueles, N. and Strazzere, L., The Pangare and La Sena mylonitic belts: evidence of transcurrence in the north Patagonian Massif, Argentina and constraints to the Patagonia allochthony: (Unpublished)
- Passchier, C.W. and Trouw, R.A.J., 1996, Microtectonics: New York, Springer-Verlag Berlin Heidelberg.
- Pearce, J. A., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Department of Earth Sciences, The Open University, Milton Keynes, KM76AA, Bucks, England.
- Winter, J.D., Principles of igneous and metamorphic petrology (second edition): Upper Saddle River, Pearson Education, Inc.

## The End