Chemical Analysis of Devils Tower

By: Ben Munson

NDSU Petrology Geol 422

May 6, 2014

Outline

- Basics of Devils Tower
- Hand Sample analysis
- XRF results
- SEM Results
- XRD Results
- Mineral Background

Devils Tower

http://www.a-roundtheworld.net/places/the-devils-tower/

Site Location

https://www.google.com/maps

- Located in the northeastern corner of Wyoming
- Crook County, Wyoming
- Within the western stretch of the Black Hills
- Near the towns of Sundance and Hulett
- Coordinates
 - 44°35′ 26″ N 104°42 ′ 56″ W

Devils Tower Basics

- United States National Monument
 - Declared as 1st national monument in September 24, 1906
- Devils Tower rises 1,267 feet above the surrounding terrain
- The monument totals 1,347 acres
- Columnar joints measure between 2m and 3m in diameter at the bottom of the structure

http://www.answersingenesis.org/articles/wog/devils-tower

Devils Tower Geology

Simplified Black Hill Geologic Column

Thickness increments x 100. Thickness values are maximums for the Black Hills and do not necessarily represent the thicknesses represented in Spearfish Canyon. The maximum thickness of Precambrian racks is not shown.

- Rises above the surrounding Sundance Formation (5 members)
 - Canyon Springs
 - Stockade Beaver
 - Hulett
 - Lak
 - Redwater
- Mostly sandstones and limestones
- The Sundance fm falls unconformably on the Gypsum spring formation
 - Deposited with the cretaceous interior seaway

(Fogerty, 2012)

Evolution of Intrusion

- Late cretaceous uplift event occurred in region
 - Possibly related to the Laramide Orogeny to the west
- Uplift particularly strong in the Northwest portion of the black hills
- Monocline forms 10km west of current Devils Tower location
- Uplift responsible for creating deep fractures and possibly melting of the mantle
- Followed by major depositional event

(Halverson, 1980)

Origin Hypotheses

- Eroded Laccolith
 - Magma intruded up through underlying sedimentary rock beds but never reached the surface
 - Explains surrounding buttes as being different vents to a single large igneous body
- Volcanic neck
 - Remnants of an ancient "plugged" volcano with a large underground magma chamber.
 - Evidence of ash deposits and lava flows in the area is not present

(Halverson, 1980)

Hand Sample

- Coarse porphyritic sample with a gray to greenish gray matrix
- Holocrystalline texture
- Large white/creamy rectangular phenocrysts
- Sample collected with special permit

XRF: Methods

- X-Ray Fluorescence (XRF)
- Crushed sample into a fine powder
- Mixed powder with an adhesive
- Pressed pellet into a disc
- Analyzed powder in XRF machine for whole rock chemical analysis

http://geology.uprm.edu/facilities/Class%2oForms/xrf.pdf

X-Ray Fluorescence: Methods

XRF: Results

Weight Percent of Oxides in Devils Tower

Formula	SiO2	Al203	Fe203	CaO	MgO	MnO	Na20	K20	P205	TiO2
Day Town	F Made	18 800	TO THE		TO THE	08/20		AND THE	13 91 50	185
Munson	64.75%	17.64%	3.02%	1.46%	0.64%	0.14%	6.44%	4.87%	0.08%	0.35%
10 25 1 4	. Carton	HE FINAN	37.1	8	25%	18 m	11.18.18	B ABL	8 1996	
T114	62.58%	19.43%	1.73%	1.41%	0.22%	0.28%	8.61%	5.14%	0.10%	0.23%
1 5 7 5 5	A. Thursday	Do Valant	(B) (B) (B)	F	1 5 7	THE SHE	46.74	19 A B	J.FIF.	1 34 26
T115	62.42%	19.02%	1.73%	1.54%	0.30%	0.30%	8.16%	5.18%	0.12%	0.23%

XRF: Results

- AFM graph plotted using PetroGraph
- Irvine and Baragar 1971 methods

XRF: Results

AFM graph plotted using PetroGraph

Thin Section

- Sample was already cut to size and in epoxy
- Glued sample to a new slide
- Cut sample with a diamond blade down to correct thickness
- Sanded thin section down to 30 microns using 400 and 1,000 grit

Thin Section

SEM: Methods

- Scanning Electron Microscope (SEM)
- Polished thin section using 1 micro grain grit
- Coated thin section with fine grained carbon
- Identified chemistry of Phenocrysts using the SEM

FOV: 8mm PPL

FOV: 2.5mm PPL

FOV: 2.5mm PPL

Phenocryst DT1

		Na2O	Al203	SiO2	K20	CaO
147299 DEVILS TOWER(1)_pt1	0.00	9.96	19.29	66.01	4.74	
147299 DEVILS TOWER(1)_pt2	0.00	10.64	19.97	65.46	2.97	0.96
147299 DEVILS TOWER(1)_pt3	0.00	10.68	19.95	65.15	3.52	0.70

Phenocryst DT2

		Na2O	Al203	SiO2	K20	CaO
147299 DEVILS TOWER(2)_pt1	0.00	10.31	19.81	65.11	3.86	0.91
147299 DEVILS TOWER(2)_pt2	0.00	10.64	19.43	65.48	4.45	
147299 DEVILS TOWER(2)_pt3	0.00	9.82	19.39	65.65	5.15	

Potential Minerals

Oxides	Na2O	Al203	SiO2	K20	CaO
Anorthoclase	7.93	20.18	66.85	3.84	0.73
Analcite	12.94	23.79	52.67	0.25	0.71
Nepheline	17.25	32.03	44.65	3.66	0.71

(Holverson, 1980)

Phenocryst Identification

Phenocrsyt DT3

		Na2O	MgO	Al203	SiO2	CaO	TiO2	MnO	Fe2O3
147299 DEVILS TOWER(3)_pt1	0.00	5.76	4.93	2.25	49.19	16.05	0.47	1.24	20.10
147299 DEVILS TOWER(3)_pt2	0.00	4.68	6.49	2.78	49.44	18.19	0.49		17.94
147299 DEVILS TOWER(3)_pt3	0.00	6.45	4.43	2.87	50.66	14.93		1.39	19.27

Pyroxene chemistry

Oxides	Na2O	MgO	Al203	SiO2	K20	CaO	TiO2	MnO	Fe2O3
Pyroxene	6.73	3.78	2.03	49.12	0.16	11.86	0.56	1.09	51.33

(Holverson, 1980)

Phenocrsyt Identification

SEM Phenocryst Results

- Anorthoclase
- DT1 and DT2:
- (Na,K)AlSi₃O₈

- Aegirine-augite
- DT3:
- (Ca,Na)(Mg,Fe⁺², Fe⁺³) Si₂O₆

XRD Methods

- X-Ray Diffraction (XRD)
- Data is from 2012 petrology project
- Used X'PERT Software for data analysis
- XRD data examines whole rock chemistry
 - Particularly interested in the matrix material

http://encyclopedia2.thefreedictionary.com/x-ray+diffraction

XRD Results

Analcime

- Chemical Formula: Na(AlSi₂O₆)-H₂O
- Cubic
- Color: White, Pink, grey, Colorless in thin section
- Framework: Aluminosilicate framework with (SiAl)O₄
 Tetrahedral linked together forming several different rings
- Continuous rings form channels which are filled with water molecules
- Physical properties
 - Hardness= 5-5.5
 - Cleavage: (100) poor
- Incompatible with free Quartz

(Klein, 2002) and (Deer et al, 1997)

Analcime

http://www.iza-online.org/natural/Datasheets/Analcime/analcime.htm

- Classified as a zeolite
 - Hydrous silicates
 - FrameworkAluminosilicates
 - Water molecules fill voids within structure
- Analcime structure, chemistry, and occurrence are very similar to the Feldspathoid group

(Klein, 2002)

QAPF Diagram

DEVILS TOWER

(Winter, 2010)

Analcime in Devils Tower

- There are several theories as to why Analcime is in Devils Tower
 - Analcime crystalized from a liquid (primary)
 - Indicated by euhedral analcime grains being observed in thin section
 - Magmatically derived hydrous fluids
 - Alteration of Leuctie
 - Leucite KAlSi₂O₆
 Analcime Na(AlSi₂O₆)-H₂O
 - Late stage replacement
 - Hydrothermal origin
 - Crystallizes after emplacement in sediments with Na-rich fluid source (data doesn't support the pressure needed)

(Halverson, 1980)

Analcime in Devils Tower

- Pressure needed
 - 8 Kb
- Temperature needed
 - 600 degrees Celsius
- Halverson estimated that this indicates the maximum depth of formation at 43 km
- Also generated from a sodic trachytic magma

http://www.tobias-weisenberger.de/5

http://www.mindat.org/photo-168183.html

(Halverson, 1980)

Recap

- Used XRF to analyze whole rock chemistry
 - Identified sample as a Trachyte
- Created a thin section
- Used SEM to identify phenocryst
 - Anorthosite, Agerine-Augite
- Used XRD to identify minerals
 - Analcime

References

- Deer, W.A., Howie, R.A., Zussman, H.J., 1997, Rock-Forming minerals 2nd ed.
- Fogerty, S., 2012 Bridal Veil Falls: hjp://sites.google.com/site/geologyofspearfishcanyon/bridal-veil-falls (accessed May 2014).
- Halverson, D.L., 1980, Devils Tower-Blackhills Alkalic Igneous Rocks and General Geology, American Geophysical Union, Washington D.C.
- Klien, C., 2002, The 22nd edition of the manul of mineral science: Hoboken New Jersey, John Wiley & Sons, Inc., 559
- Winter, J.D., 2010, Principles of Igneous and Moetamofphic Petrology, 2nd ed: Upper Saddle River, NJ, Prentice hall.

Questions?

